# Advanced (International) Macroeconomics

Hartmut Egger

University of Bayreuth

Fall 2024

Hartmut Egger 1 of 111

#### Table of Contents

- 1. Intertemporal Trade and Current Account (O&R[1,2])
- Balassa-Samuelson effect in economy with traded and non-traded goods (O&R[4])
- 3. Nominal interest rates and nominal exchange rate (R[1])
- 4. Money and exchange rates (O&R[8,9])

## Intertemporal Trade and Current Account

## 2-Period Model

#### 2-period model

#### Within periods:

Inter- and intraindustry trade (see trade theory from Ricardo, Heckscher/Ohlin to new trade theories with imperfect markets). Gains from international labor division (comparative advantages), exploitation of economies of scale or intensified competition.

#### **Across periods:**

Intertemporal trade. Gains from international borrowing and lending.

### Intertemporal choice - preferences

$$U = u(c_1) + \beta u(c_2), \quad 0 < \beta < 1$$
 (1)

- u period (instantaneous) utility
- $u' > 0, u'' < 0, \lim_{c \to 0} u'(c) = \infty$
- $\triangleright$   $\beta$  subjective discount factor (time-preference parameter)

#### Marginal rate of substitution

$$MRS\left(\equiv -\frac{dc_2}{dc_1}\bigg|_{U=const}\right) = \frac{u'(c_1)}{\beta u'(c_2)}$$
 (2)

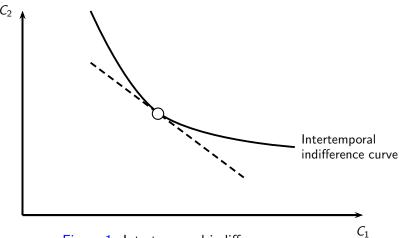


Figure 1: Intertemporal indifference curve

## Utility functions and intertemporal budget constraint

#### Isoelastic utility functions

- ightharpoonup Example 1:  $u(c_t) = \ln c_t$
- lacksquare Example 2:  $u(c_t) = rac{c_t^{1-1/\sigma}}{1-1/\sigma}$  ,  $0<\sigma(
  eq 1)$ .

#### Intertemporal budget constraint

$$c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r} \tag{3}$$

- ▶ r interest rate (if there are variable interest rates,  $r_{t+1}$  denotes interest rate from t to t+1 . Then  $\frac{c_2}{1+r_2}$  etc.).
- $\triangleright$   $y_t$  endowment (income) in period t.

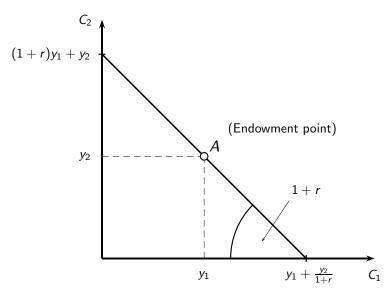


Figure 2: Intertemporal budget constraint

## Optimal intertemporal choice

max 
$$U$$
 s.t. (3)

Lagrange-Function:

$$\mathcal{L} = u(c_1) + \beta u(c_2) + \lambda \left( y_1 + \frac{y_2}{1+r} - c_1 - \frac{c_2}{1+r} \right)$$

### Optimal intertemporal choice

First-order conditions

$$\frac{\partial \mathcal{L}}{\partial c_1} = 0 \implies u'(c_1) = \lambda$$

$$\frac{\partial \mathcal{L}}{\partial c_2} = 0 \implies \beta u'(c_2) = \frac{\lambda}{1+r}$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \implies (3)$$

combine to the so-called *intertemporal Euler equation*:

$$u'(c_1) = (1+r)\beta u'(c_2) \tag{4}$$

Eq. (4) determines how consumption needs to be allocated intertemporally in order to maximize utility at a given interest rate r.

#### Interpretation of Euler Equation

The intertemporal choice is optimal if there are no gains from intertemporal reallocation. Equation (4) is equivalent to

$$MRS = 1 + r \tag{5}$$

where MRS is given by (2)

# Equilibrium in an endowment economy

### Equilibrium in an endowment economy

Endowment economies have no capital accumulation and no production.

#### Aggregate supply (with symmetric agents):

 $Y_t = y_t N_t$ , t = 1, 2 where  $N_t$  is the population size in period t. In the following,  $N_t$  is normalized to 1 so that  $Y_t = y_t$ .

#### Aggregate demand:

$$C_t = c_t, \ t = 1, 2$$

### Equilibrium in an endowment economy

In closed economy (autarky):

$$C_t = Y_t, \ t = 1,2$$
 (6)

In open economy:

$$C_t = Y_t + r_t B_t - C A_t \tag{7}$$

where  $B_t$  is the value of *net foreign assets* inherited from period t-1 and  $CA_t$  is the *current account balance* (Ertragsbilanz, auch Leistungsbilanz).

By definition,

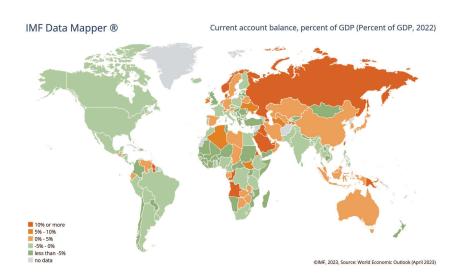
$$CA_t = B_{t+1} - B_t \tag{8}$$

- ightharpoonup Gross domestic product (GDP) (Bruttoinlandsprodukt):  $Y_t$
- Gross national product (GNP) (Bruttosozialprodukt):  $Y_t + r_t B_t$  i.e.
  - ► GNP=GDP+net international factor payments
  - net international factor payments here only includes interest and dividend earnings on net foreign assets
  - but no workers remittances
- ▶ Trade balance (goods and services): Net exports  $NX_t$

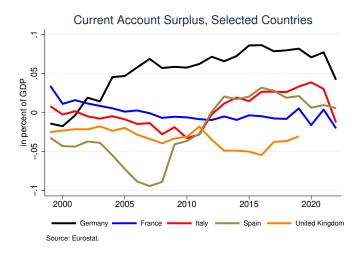
- ▶ Capital account balance (Kapitalverkehrsbilanz, auch Kapitalbilanz; includes financial account balance): Net sales of foreign assets:  $-(B_{t+1} B_t)$
- ► Balance of payments (Zahlungsbilanz):  $NX_t + r_tB_t = B_{t+1} - B_t$
- ► Current account balance (Ertragsbilanz, auch Leistungsbilanz):

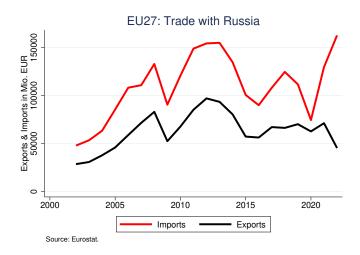
within period perspective: 
$$CA_t = NX_t + r_tB_t$$
 (9)

intertemporal perspective: 
$$CA_t = B_{t+1} - B_t$$
 (10)





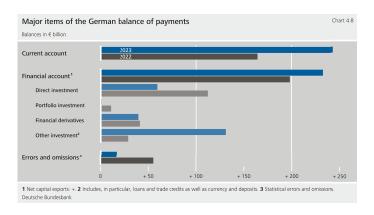




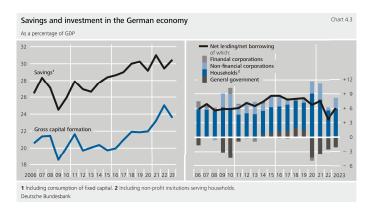
Major items of the balance of payments (€ billions)

| Item                                                  | 2021   | 2022   | 2023   |
|-------------------------------------------------------|--------|--------|--------|
| I. Current account                                    |        |        |        |
| Total                                                 | +163.5 | +164.6 | +243.1 |
| 1. Goods <sup>1</sup>                                 | +196.5 | +125.9 | +226.8 |
| 2. Services                                           | +1.6   | -37.3  | -63.8  |
| 3. Primary income                                     | +123.2 | +142.1 | +143.9 |
| 4. Secondary income                                   | -57.8  | -66.1  | -64.6  |
| II. Capital account                                   |        |        |        |
| Total                                                 | -2.6   | -21.6  | -27.3  |
| III. Financial account balance <sup>2</sup>           |        |        |        |
| Total                                                 | +209.0 | +198.2 | +232.6 |
| <ol> <li>Direct investment</li> </ol>                 | +81.5  | +112.2 | +59.7  |
| <ol><li>Portfolio investment</li></ol>                | +197.2 | +10.7  | +1.2   |
| <ol> <li>Financial derivatives<sup>3</sup></li> </ol> | +47.9  | +41.5  | +40.0  |
| <ol> <li>Other investment<sup>4</sup></li> </ol>      | -149.5 | +29.3  | +130.9 |
| 5. Reserve assets                                     | +31.9  | +4.4   | +0.9   |
| IV. Errors and omissions                              |        |        |        |
| Total                                                 | -51.9  | +55.2  | +16.7  |

Source: Deutsche Bundesbank: Monthly Report, March 2024.  $^1$  Mainly foreign trade.  $^2$  Increase in net external position:  $^-$  Arising from options and financial futures contracts or employee stock options.  $^4$  Includes loans and trade credits as well as currency and deposits.



Source: Deutsche Bundesbank: Monthly Reports, March 2024



Source: Deutsche Bundesbank: Monthly Reports, March 2024

Long-run impact of short-run imbalances:

$$CA_t = NX_t + r_tB_t$$
 and  $CA_t = B_{t+1} - B_t$ 

imply

$$B_{t+1} = NX_t + (1+r_t)B_t$$

Repeating the argument for  $B_{t+2}$  we get

$$B_{t+2} = NX_{t+1} + (1 + r_{t+1})NX_t + (1 + r_t)(1 + r_{t+1})B_t$$

In a T+1-period world with  $r_t=r$  (inheriting  $B_t$  and leaving  $B_{t+T+1}$ ):

$$B_{t+T+1} = (1+r)^{T+1}B_t + (1+r)^T NX_t + \dots + (1+r)NX_{t+T-1} + NX_{t+T}$$

 $\iff$ 

$$\left(\frac{1}{1+r}\right)^{T} B_{t+T+1} = (1+r)B_{t} + \sum_{s=t}^{t+T} \left(\frac{1}{1+r}\right)^{s-t} NX_{s} (11)$$

Terminal condition

$$B_{t+T+1}=0$$

implies

$$\sum_{s=t}^{t+T} \left(\frac{1}{1+r}\right)^{s-t} NX_s = -(1+r)B_t$$

For instance, for  $B_3 = B_1 = 0$  (temporary imbalance<sup>1</sup>):

$$NX_1 + \frac{NX_2}{1+r} = -(1+r)B_1 = 0$$
  
 $CA_1 + CA_2 = 0$ 

and

$$CA_1 = B_2 - B_1 = B_2$$
  
 $CA_2 = B_3 - B_2 = -B_2$   
 $NX_1 = CA_1 - rB_1 = CA_1 = B_2$   
 $NX_2 = CA_2 - rB_2 = -(1+r)B_2$ 

if interested in more long-run dynamics, see Obstfeld/Rogoff Chapter 2

## Equilibrium in a closed economy

### Equilibrium in a closed economy

Goods market equilibrium

$$C_t = Y_t, \ t = 1, 2$$

and optimal consumption choice (cf. intertemporal Euler equation)

$$u'(C_1) = (1+r)\beta u'(C_2)$$

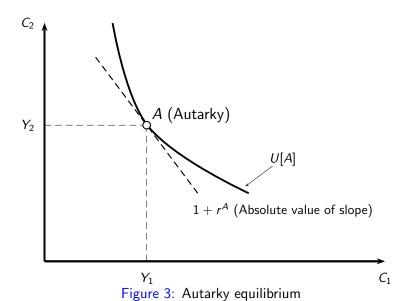
give us the autarky real interest rate

$$1 + r^{A} = \frac{u'(Y_1)}{\beta u'(Y_2)} \tag{12}$$

#### Equilibrium in a closed economy

(Budget constraint (3) is obviously fulfilled for  $C_t = Y_t$ .)

- ▶  $1 + r^A$  is the willingness to pay for present consumption.
- Virtual price in closed economy without investment possibilities.
- Relevant when opening up.



Hartmut Egger

## Effect of time preference on $r^A$

$$\beta > \widetilde{\beta}$$
 implies

$$MRS(Y_1, Y_2) < \widetilde{MRS}(Y_1, Y_2)$$

where 
$$MRS(Y_1, Y_2) \equiv \frac{u'(Y_1)}{\beta u'(Y_2)}$$

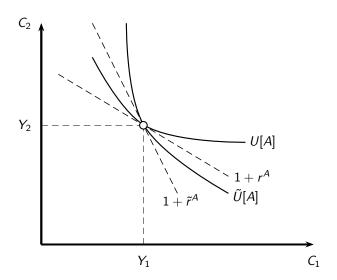


Figure 4:  $r^A$  rises with impatience.

## Effect of output changes on $r^A$

Assume linear consumption expansion path  $(MRS(\lambda Y_1, \lambda Y_2) = MRS(Y_1, Y_2))$ 

- $ightharpoonup r^A$  rises if positive output shock is expected.
- $\triangleright$  No change of  $r^A$  if present and future output rise pari passu.

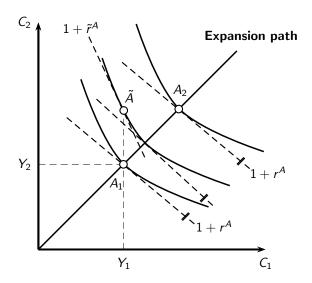


Figure 5: Effect of output changes on  $r^A$ 

# Equilibrium in a small open economy

# Equilibrium in a small open economy

- 2 periods:  $B_1 = B_3 = 0$  i.e.  $NX_1 + \frac{NX_2}{1+r} = 0$
- r exogenously given by the world market

Intertemporal equilibrium allocation  $C_1$ ,  $C_2$  determined by:

$$u'(C_1) = (1+r)\beta u'(C_2)$$
 (13)

$$C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r} \tag{14}$$

### Special case

If subjective discount factor is equal to market discount factor

$$\beta = \frac{1}{1+r},$$

the solution of (13) & (14) is given by

$$C_1 = C_2 \equiv \overline{C} \tag{15}$$

$$\overline{C} = \frac{(1+r)Y_1 + Y_2}{2+r}$$
 (16)

For  $\beta < \frac{1}{1 \perp r}$  the allocation is biased in favor of  $C_1$ .

# Open vs. closed economy equilibrium

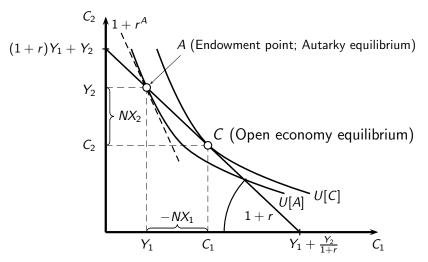


Figure 6: Comparing open and closed equilibrium if  $r_A > r$ 

# Open vs. closed economy equilibrium

- Access to international capital markets allows intertemporal income shifting.
- ▶ Here from future to present (borrowing) since  $r < r^A$ .
- ▶ Gains from intertemporal trade U[C] > U[A]
- Debt from current net imports  $NX_1 = Y_1 C_1 < 0$  must be paid back by future net exports

$$NX_2 = -(1+r)NX_1 = Y_2 - C_2 > 0$$

# Implications for trade flows and capital account

According to (7), (9) and (10):

$$C_1 = Y_1 + rB_1 - CA_1 = Y_1 + (1+r)B_1 - B_2$$
  
=  $Y_1 - NX_1$   
 $C_2 = Y_2 + rB_2 - CA_2 = Y_2 + (1+r)B_2 - B_3$   
=  $Y_2 - NX_2$ 

In 2-period world: 
$$B_1 = B_3 = 0$$

#### Trade flows

$$C_1 - Y_1 = -NX_1$$
  
 $Y_2 - C_2 = (1+r)(C_1 - Y_1) = NX_2$ 

#### Net foreign assets

$$B_2 = -(C_1 - Y_1)$$
  
 $Y_2 - C_2 = -(1+r)B_2 = (1+r)(C_1 - Y_1)$ 

# "Long-run" effects of short-run trade deficit

If endowment expectations are wrong, the associated short run trade deficit may have long-run implications (3 or more periods,  $B_1=0$ ).

- $ightharpoonup CA_1 = NX_1 = B_2$
- $\triangleright$   $CA_2 = rB_2 = rNX_1$
- $\triangleright B_3 = CA_2 + B_2 = (1+r)NX_1$

$$B_{t+1}=B_t,\ t\geqslant 3$$
 requires  $CA_t=NX_t+rB_t=0$   $\Longrightarrow$  For  $t\geqslant 3$ :  $NX_t=-r(1+r)NX_1\Longrightarrow C_{t(\geqslant 3)}< Y_t$ 

$$B_4 = 0$$
 requires  $CA_3 = -B_3$  
$$\implies NX_3 = -(1+r)^2 NX_1 \Longrightarrow \widetilde{C}_3 < C_{t(>3)} < Y_3$$

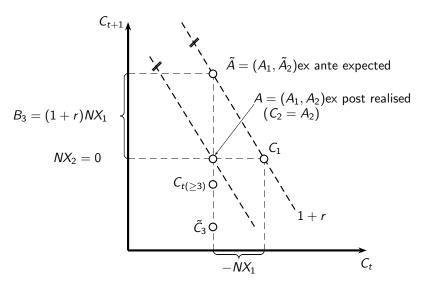


Figure 7: "Long-run" effects of trade deficit (3 per.,  $B_1 = 0$ )

#### Case $r < r^A$

(see figure 6): Implies  $NX_1 < 0$ ,  $NX_2 > 0$ , given  $B_1 = B_3 = 0$ .

- ► The country is a net importer in period 1, net exporter in period 2.
- ▶ 1 + r is the price of present consumption (here the import good) in terms of future consumption (export good).

#### Terms of trade

Terms of trade 
$$=$$
  $\frac{\text{price of exports}}{\text{price of imports}} = \frac{1}{1+r}$   $\frac{\text{decline in }r}{\text{positive income and wealth effect on }C_1}$   $\frac{\text{positive income and wealth effect on }C_1}{\text{ii)}}$  substitution effects also favors  $C_1$ 

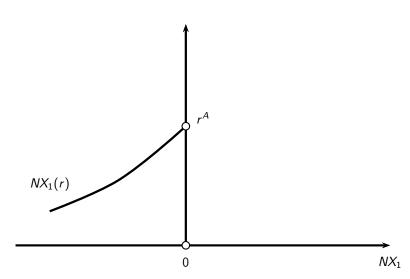


Figure 8: Net exports and interest rate if  $r < r^A$ 

#### Case $r > r^A$

(see figure 9): Implies  $NX_1 > 0$ ,  $NX_2 < 0$ , given  $B_1 = B_3 = 0$ .

lacktriangle Country is net exporter of present output, terms of trade 1+r

rise in  $r \Rightarrow i$ ) positive terms of trade effect on  $C_1$   $\Rightarrow$  ii) negative substitution effect on  $C_1$ 

In sum, the  $NX_1$ -reaction is ambiguous.

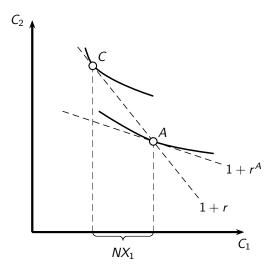


Figure 9: Intertemporal trade with  $r > r^A$ 

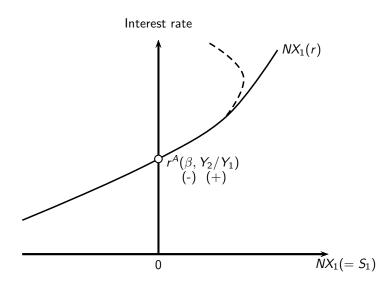


Figure 10: Net exports and interest rate if  $r > r^A$ 

The position of the curve is fixed by  $r^A$ .

Remember:  $r^A$  declines in  $\beta$  and (for linear expansion path of consumption) rises with  $Y_2/Y_1$ .

Moreover: For  $B_1 = 0$ ,  $CA_1 = NX_1$  and thus  $S_1 \equiv Y_1 + rB_1 - C_1 = NX_1$ 

# International equilibrium – 2 large economies

Two country world:

Home: 
$$r^{A}(\beta, Y_{2}/Y_{1})$$
  
Foreign:  $r^{A^{*}}(\beta^{*}, Y_{2}^{*}/Y_{1}^{*})$ 

integrated world is like closed economy with goods market equilibrium condition

$$C_t + C_t^* = Y_t + Y_t^*$$

Using 
$$C_t+NX_t=Y_t,\ C_t^*+NX_t^*=Y_t^*,$$
 we get 
$$NX_t+NX_t^*=0 \eqno(17)$$

This determines world interest rate r.

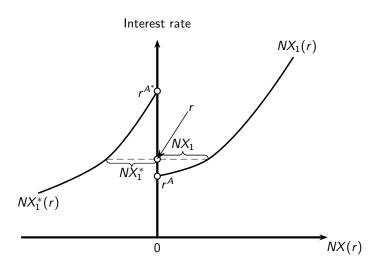


Figure 11: Equilibrium world interest rate if  $r^{A^*} > r^A$ 

### International equilibrium – 2 large economies

If increasing impatience ( $\beta$  or  $\beta^* \downarrow$ ) or rising future output ( $Y_2/Y_1$  or  $Y_2^*/Y_1^* \uparrow$ ) raise  $r^A$  or  $r^{A^*}$  the equilibrium world interest rate rises, ceteris paribus. This

- worsens terms of trade for net importer Foreign
- improves terms of trade for net exporter Home

# Capital accumulation and production

# Capital accumulation and production - Assumptions

#### **Production function:**

$$Y_t = F(K_t)$$

#### Properties:

- F(0) = 0
- ► F' > 0
- ► F'' < 0

#### Inada conditions:

- $\blacktriangleright \lim_{K\to 0} F'(K) = \infty$

Since  $N_t = 1$ , level of capital stock  $K_t$  and capital intensity  $k_t = K_t/N_t$  coincide.

# Capital accumulation and production – Assumptions

#### Capital accumulation:

$$K_{t+1} = K_t + I_t \tag{18}$$

(Depreciation ignored, K can be eaten up, i.e.  $I_t = -K_t$ .)

#### Capital demand under perfect competition:

$$r_{t} = F'(K_{t}) \tag{19}$$

#### Wages (labor demand) under perfect competition:

$$W_t = F(K_t) - r_t K_t \tag{20}$$

# Closed economy with capital accumulation and production

# Intertemporal production and investment – Autarky

Goods market equilibrium

$$C_{t} + I_{t} = Y_{t}$$

$$C_{1}$$

$$Y_{1} = F(K_{1})$$

$$I_{1}$$

$$Y_{2} = F(K_{2})$$

$$I_{2}$$

$$K_{1} + I_{1} = K_{2}$$

$$K_{3}$$

$$t - 1 \quad \text{Period } t = 1 \qquad \text{Period } t = 2 \qquad t \geq 2$$

# Intertemporal transformation curve ("Production possibilities Frontier" PPF)

$$C_2 + K_3 = F(K_2) + K_2$$
  
=  $F\left[K_1 + \underbrace{F(K_1) - C_1}_{I_1}\right] + K_1 + F(K_1) - C_1$  (22)

#### **Intertemporal PPF:**

$$C_2^+ \equiv C_2 + K_3$$

$$C_2^+ = F\left(\underbrace{\mathcal{K}_1 + F(\mathcal{K}_1) - C_1}_{\mathcal{K}_2}\right) + \underbrace{\mathcal{K}_1 + F(\mathcal{K}_1) - C_1}_{\mathcal{K}_2}$$

# Intertemporal transformation curve ("Production possibilities Frontier" PPF)

$$\frac{dC_{2}^{+}}{dC_{1}} = -\left[1 + F'\left(\underbrace{K_{1} + F(K_{1}) - C_{1}}_{K_{2}}\right)\right] < 0$$

$$\frac{d^{2}C_{2}^{+}}{dC_{1}^{2}} = F''(K_{2}) < 0$$

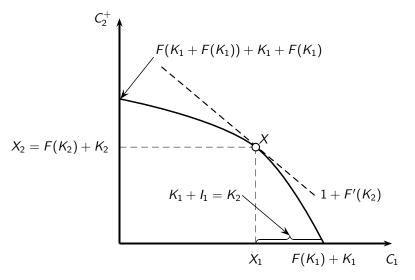
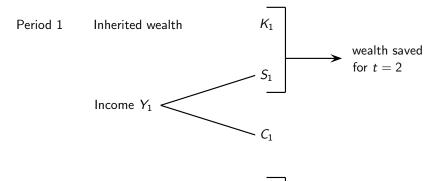
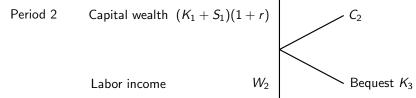


Figure 12: Intertemporal production possibilities frontier

# Intertemporal budget constraint of representative HH





# Intertemporal consumption possibility line (CPL)

Intertemporal budget constraint:

$$C_2 + K_3 = W_2 + (K_1 + Y_1 - C_1)(1+r)$$
 (23)

Since  $W_2 = F(K_2) - rK_2$  and  $K_1 + Y_1 - C_1 = K_2$  (23) is consistent with (22).

That means: Savings behavior of households leads to a point on the economy's PPF.

The question is: which point?

## Optimal intertemporal choice

 $K_{3}$ - choice depends on the "bequest" motive. Can be captured by

$$u(C_1) + \beta u(C_2^+)$$

$$C_2^+ = C_2 + K_3 \dots$$
 "bequest" motive  $C_2^+ = C_2 \dots$  no "bequest" motive

max 
$$u(C_1) + \beta u(C_2^+)$$
 s.t.  $C_2^+ = W_2 + (K_1 + Y_1 - C_1)(1+r)$ 

# Optimal intertemporal choice

Optimal intertemporal choice yields first-order condition

$$MRS \equiv \frac{u'(C_1)}{\beta u'(C_2^+)} = 1 + r$$

where  $K_3=0$  without bequest motive. ( $K_3=0$  implies  $K_2+I_2=0$  and thus  $S_2=I_2=-K_2$ .) In dubio, assume  $K_3=0$ , i.e.  $C_2=C_2^+$  in the following.

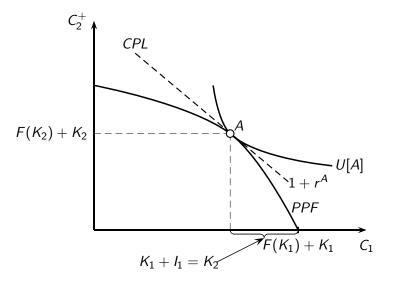


Figure 13: CPL and PPF

# Small open economy with capital accumulation and production

# SMOPEC with capital accumulation and production

Goods market equilibrium

$$C_t + I_t + NX_t = Y_t (24)$$

and intertemporal foreign account (see (11))

$$NX_2 + (1+r)NX_1 = \underbrace{B_3 - (1+r)^2 B_1}_{D}$$

imply

$$C_2 + (1+r)C_1 = Y_2 - I_2 + (1+r)(Y_1 - I_1) - D$$
  
=  $F(K_2) - [K_3 - K_2] + (1+r)[F(K_1) - (K_2 - K_1)] - D$ 

## SMOPEC with capital accumulation and production

Hence,

$$\underbrace{C_2 + K_3}_{C_2^+} + (1+r)C_1 = \underbrace{F(K_2) + K_2}_{X_2} + (1+r)\underbrace{[F(K_1) + K_1 - K_2]}_{X_1} - D$$
(25)

where  $X = (X_1, X_2)$  is a point at the PPF.

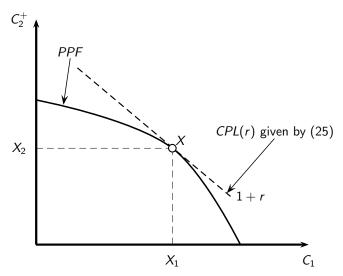


Figure 14: Consumption possibilities line (CPL) under world interest and D = 0.

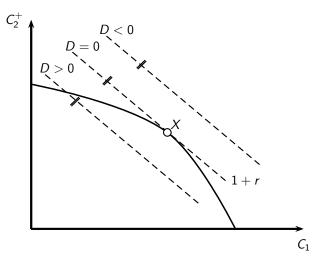


Figure 15: CPL under long-run imbalances  $(D \neq 0)$ 

In the following D=0 (e.g.  $B_1=B_3=0$ ).

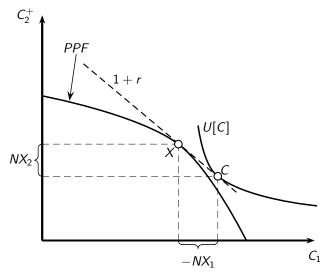


Figure 16: Equilibrium production (X) equilibrium consumption (C), and trade balances (NX)

# From autarky to open economy equilibrium

#### Consider $r < r^A$ :

In addition to the picture for the endowment economy: Production structure shifts from A to X by higher investments  $\Delta I_1$ .

Increase in current consumption by  $\Delta C_1$ . Current account deficit  $-NX_1 = \Delta I_1 + \Delta C_1$  paid back by increased future production (+ possibly lower consumption).

#### Case $r < r^A$ :

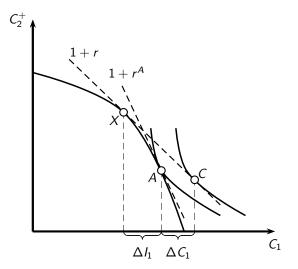


Figure 17: Double gains from intertemporal trade

#### Case $r > r^A$ :

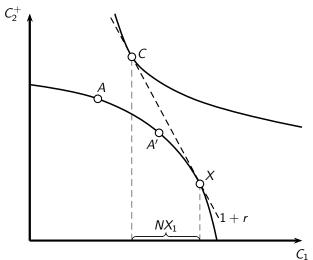


Figure 18: A net exporting country

# From autarky to open economy equilibrium

Production shifts in favor of current output by decreasing investment  $\Delta I_1 < 0$ . Additional output allows net exports.

Net exports today allow higher future consumption  $\Delta C_2 > 0$  by future imports  $(NX_2 = -(1+r)NX_1)$ . Present consumption  $C_1$  may shrink (A') or increase (A) depending on the relative strength of income and substitution effect (plus output shift).

# Adding government consumption

# Adding government consumption

With government consumption, period utility has the following additive form: u(C) + v(G). The budget constraint in the two period model is

$$C_1 + \frac{C_2}{1+r} = Y_1 - T_1 - I_1 + \frac{Y_2 - T_2 - I_2}{1+r},$$

where  $T_t$  denotes taxes and  $Y_t - T_t$  is 'disposable' income of the private sector in period t.

Goods market equilibrium in period t:

$$C_t + I_t + G_t + NX_t = Y_t (26)$$

# Adding government consumption

Current account balance (recall (9),(10)):

$$CA_{t} = NX_{t} + rB_{t}$$

$$= Y_{t} + rB_{t} - C_{t} - G_{t} - I_{t}$$

$$= \underbrace{Y_{t} + rB_{t} - C_{t} - T_{t}}_{S_{t}^{P} \text{ private savings}} + \underbrace{T_{t} - G_{t}}_{\text{public savings}} - I_{t}$$

With a balanced budget  $T_t = G_t$  of the public sector, private savings are equal to total savings  $(S_t^P = S_t)$  and

$$CA_t = \underbrace{S_t^P + T_t - G_t}_{S_t \text{ total savings}} - I_t$$
 (27)

$$B_{t+1} = B_t + S_t - I_t (28)$$

# Impact of G in small open economy

Increase in  $G_1(G_2)$  shifts transformation curve (PPF) for private sector leftward (downward).

In the following illustration (with a balanced budget of the government:  $T_t = G_t$ ):

Initial situation: 
$$G_1 = G_2 = 0$$
 and  $NX_1 = NX_2 = 0$ 

Shock 1: 
$$G_1 \uparrow$$

Shock 2: 
$$G_2 \uparrow$$

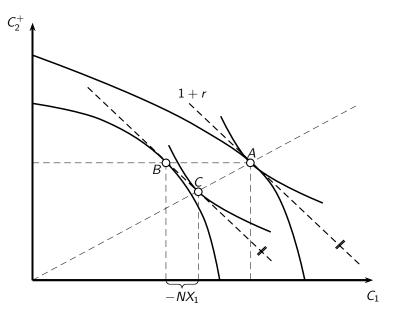


Figure 19: Impact of  $G_1$  increase

# Impact of $G_1$ increase

- Private feasible output shifts from A to B.
- ▶ Would decrease  $C_1$  by the full amount of  $G_1 = \overline{BA}$  leaving  $C_2$  unaffected
- ▶ Individuals prefer *C* by borrowing from abroad.

Impact of anticipated  $G_2$  increase on next slide

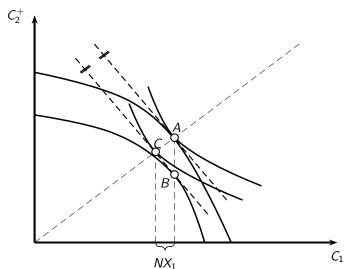


Figure 20: Impact of anticipated  $G_2$  increase

Individuals "hedge" against tax  $G_2$  by lending to Foreign in Period 1

# Investment, savings and world interest rate in international equilibrium

# Investment, savings and world interest rate in international equilibrium

#### The investment function

Production function:

$$Y_t = A_t F(K_t)$$

 $A_t$ : Productivity parameter

Accumulation equation:

$$K_2 = K_1 + I_1$$

In the following, we consider a 2-period model with  $B_1 = B_3 = 0$ ,  $K_3 = 0$  and  $G_t = T_t = 0$ .

#### The investment function

Condition for optimal capital input under perfect competition:

$$r = A_2 F'(K_1 + I_1) (29)$$

(29) defines investment curve

$$I_1 = I(r/A_2), I' < 0$$

The negative slope follows from F'' < 0.

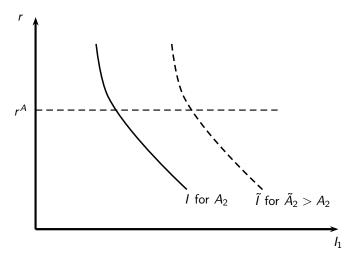


Figure 21: Investment curve and productivity shifts

Shifts in  $A_1$  have no effect on investment since  $K_1$  is already fixed from past decisions.

Reconsidering the endowment economy: From the endowment economy we know that  $B_1 = B_3 = 0$  implies  $S_1 = Y_1 - C_1 = NX_1(r)$ .

Furthermore, we can note that,  $dS_1/dr = dNX_1/dr = -dC_1/dr$ .

To determine the impact of interest rate r on savings (or, equivalently,  $NX_1$ ), we can first look at the intertemporal Euler equation  $u'(C_1) = (1+r)\beta u'(C_2)$ .

Substituting the budget constraint  $C_2 = (1 + r)(Y_1 - C_1) + Y_2$  gives

$$u'(C_1) = (1+r)\beta u'((1+r)(Y_1 - C_1) + Y_2). \tag{30}$$

Implicitly differentiating (30) with respect to r gives

$$\frac{dC_1}{dr} = \frac{\beta u'(C_2) + \beta(1+r)u''(C_2)(Y_1 - C_1)}{u''(C_1) + \beta(1+r)^2 u''(C_2)}.$$
 (31)

Noting u'>0, u''<0, it is immediate that  $dNX_1(r)/dr=-dC_1/dr>0$  if  $C_1>Y_1$  (or, equivalently,  $NX_1<0$ ).

However,  $dNX_1(r)/dr = -dC_1/dr < 0$  cannot be ruled out if  $Y_1 > C_1$  (or, equivalently,  $NX_1 > 0$ ) – see Figure 10.

Consumption in a model with capital accumulation and production Substituting the budget constraint

$$C_2 = (1+r)[A_1F(K_1) - C_1 - I_1] + A_2F(K_1 + I_1) + K_1 + I_1$$

for  $C_2$  in the Euler equation  $u'(C_1) = (1+r)\beta u'(C_2)$ , gives

$$u'(C_1) = (1+r)\beta u' \{ (1+r)[A_1F(K_1) - C_1 - I_1] + A_2F(K_1 + I_1) + K_1 + I_1 \}.$$
 (32)

Implicitly differentiating with respect to r yields

$$\frac{dC_1}{dr} = \frac{\beta u'(C_2) + \beta(1+r)u''(C_2) [A_1F(K_1) - C_1 - I_1]}{u''(C_1) + \beta(1+r)^2 u''(C_2)} + \frac{\beta(1+r)u''(C_2) \{A_2F'(K_1 + I_1) - r\} \partial I/\partial r}{u''(C_1) + \beta(1+r)^2 u''(C_2)}.$$

Accounting for  $A_2F'(K_1 + I_1) = r$  further implies

$$\frac{dC_1}{dr} = \frac{\beta u'(C_2) + \beta(1+r)u''(C_2)[A_1F(K_1) - C_1 - I_1]}{u''(C_1) + \beta(1+r)^2 u''(C_2)}.$$
 (33)

Hence, the derivative in (33) is precisely the same as the derivative in (31), but with  $Y_1 - C_1$  replaced by the date 1 current account for an investment economy with  $B_1 = 0$ :  $A_1F(K_1) - C_1 - I_1$ .

That means that, given current account balances, the slope of the saving schedule is the same as for the endowment economy!

#### An intuition for this result

The symmetry in the reaction of savings to interest rate adjustments in the endowment and the investment economy is a consequence of the *envelope theorem*.

The first-order condition for profit-maximizing investment ensures that a small deviation from optimum investment does not alter the present value of national output, evaluated at the world interest rate.

Consequently, at the margin, the investment adjustment  $\partial I_1/\partial r$  has no effect on net lifetime resources, and hence no effect on consumption response.

#### From consumption to saving

As noted above, savings in period 1 are given by  $S_1 = Y_1 - C_1$  or, equivalently,  $S_1 = A_1F(K_1) - C_1$ . Hence, we can write savings as function of r,  $A_1$ ,  $A_2$  and  $\beta$ :

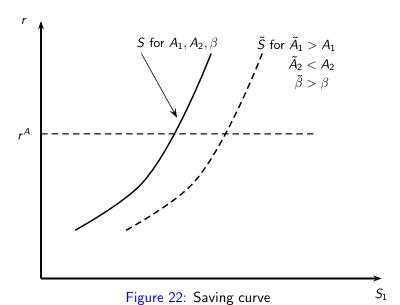
$$S_1 = S(r, A_1, A_2, \beta),$$

with  $\partial S_1/\partial r > 0$  in the regular (non-perverse) case.

#### Saving curve and productivity shift

An increase of  $A_t$  has analogous effects to an increase of  $Y_t$  in endowment economy.

- ► According to slide 52 a rise in *Y*<sub>1</sub> shifts the *S*-curve to the right. A rise in *Y*<sub>2</sub> shifts the *S*-curve to the left.
- $\triangleright$  Rising impatience (a fall in  $\beta$ ) also shifts the saving curve to the left.



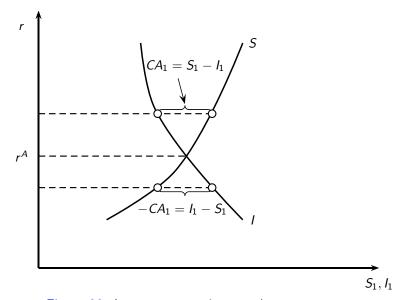


Figure 23: Investment, savings, and current account

# International equilibrium in a two-region world

#### The Metzler diagrams

World equilibrium requires

$$CA_1 + CA_1^* = 0$$

i.e.

$$S_1 - I_1 = -(S_1^* - I_1^*)$$

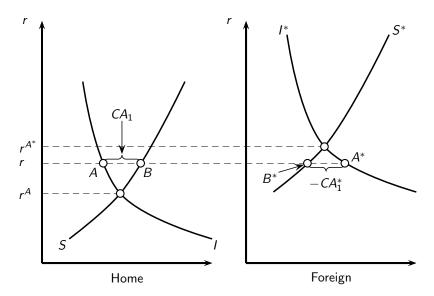


Figure 24: World equilibrium interest rate  $r^A < r < r^{A*}$ 

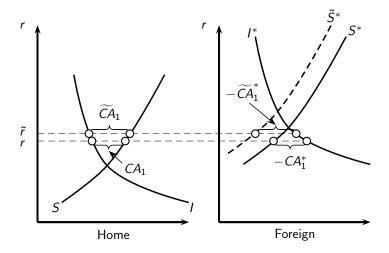


Figure 25: Impact of rising impatience in Foreign  $(\beta^* \downarrow)$ 

World interest rate rises and current account  $CA_1$  from *Home* to *Foreign* increases. Investment decreases in both regions.

# Impact of positive productivity shock in Foreign

Consider a productivity shock of the form  $A_2^* \uparrow$ 

World interest rate rises

In Home Investment falls

Saving and  $CA_1$ -surplus rise

In Foreign Investment reaction ambiguous

CA<sub>1</sub>\*-deficit rises

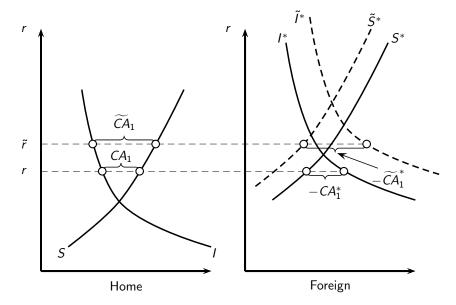


Figure 26: Impact of positive productivity shock in Foreign

The world equilibrium condition  $CA_t + CA_t^* = 0$  is

$$S_t(r) + S_t^*(r) = I_t(r) + I_t^*(r)$$
 (34)

(Use 
$$CA_t = S_t - I_t$$
)

As addressed in Figure 10, the saving curve may be backward bending, so that multiple equilibria and unstable equilibria cannot be excluded.

(Walrasian) stability condition: A market is stable in the Walrasian sense if a small increase in the price of the good traded there causes excess supply, while a small decrease causes excess demand.

The stability condition defining Walrasian stability in the market for world savings is that a small rise in r should lead to an excess supply of savings:

$$\frac{d\left[S_{1}(r) + S_{1}^{*}(r)\right]}{dr} > \frac{d\left[I_{1}(r) + I_{1}^{*}(r)\right]}{dr}$$
(35)

Stability guarantees that market forces tend to eliminate imbalances resulting from small disturbances of international equilibrium.

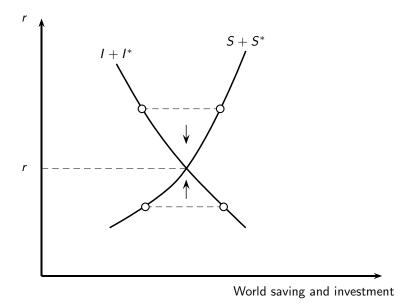


Figure 27: Savings and Investment

For  $B_1 = B_3 = 0$  national accounting identities imply

$$NX_1 = CA_1 = S_1 - I_1$$
  
 $NX_1^* = CA_1^* = S_1^* - I_1^*$ 

Moreover (see (11)),

$$NX_1^* + \frac{NX_2^*}{1+r} = 0$$

Using this in international equilibrium condition (34), we get

$$S_1 - I_1 + S_1^* - I_1^* = NX_1 - \frac{NX_2^*}{1+r}$$

Thus (35) is equivalent to

$$\frac{d\left[NX_1(r) - \frac{NX_2^*(r)}{1+r}\right]}{dr} > 0 \tag{36}$$

$$\frac{d \left[ NX_{1}(r) - \frac{NX_{2}^{*}(r)}{1+r} \right]}{dr} = NX_{1}^{\prime} - \frac{NX_{2}^{*\prime}(1+r) - NX_{2}^{*}}{(1+r)^{2}}$$

$$= \frac{NX_{2}^{*}}{(1+r)^{2}} \left[ \frac{(1+r)NX_{1}^{\prime}}{NX_{1}} \frac{NX_{1}(1+r)}{NX_{2}^{*}} - \frac{NX_{2}^{*\prime}(1+r)}{NX_{2}^{*}} + 1 \right]$$

In equilibrium  $NX_1(1+r)=-NX_2=NX_2^*$ . Thus the square bracket is negative (positive) if

$$\underbrace{-\frac{(1+r)NX_{1}'}{NX_{1}}}_{\eta} + \underbrace{\frac{(1+r)NX_{2}^{*'}}{NX_{2}^{*}}}_{\eta^{*}} > (<)1$$
 (37)

If Home is net importer today ( $NX_1 < 0$ ), then  $NX_2^* < 0$  and stability condition (35) is equivalent to

$$\eta + \eta^* > 1. \tag{38}$$

# Interpretation $(NX_1 < 0)$

 $\eta$  is the (absolute value of) negative import elasticity of Home with respect to price 1+r of current consumption.  $\eta^*$  is the (positive) elasticity of Foreign's future imports. (38) is the intertemporal analogue to the so-called *Marshall-Lerner* condition.

#### Remark

When *Home* happens to be the exporter in period 1, rather than the importer, (38) still characterizes the Walras-stable case, but with import elasticities defined so that Home's and Foreign's role are interchanged.