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Introduction

Introduction

• Question for Students: Background and expectations.
• Focus: Methods and microeconometrics.
• But also: Applications.
• Organization:

• Start: Monday, 09.12.2024.
• End: Tuesday, 04.02.2025.
• No lectures between 18.12.2024-06.01.2025.
• Room: H21 (RWIIEG0.14).
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Introduction

Introduction

• This course provides a comprehensive treatment of mainly
microeconometric methods, allowing to analyse individual-level data
on the economic behaviour of individuals or firms using regression
methods applied to cross-section and panel data.

• I will give a brief introduction to machine learning/statistical learning
and relate it to what we have learned in the course.

• The linear regression model will be discussed, but basic knowledge is
assumed. The course will use matrix algebra. A short refresher will be
given in the tutorials.

• However, orientation toward the practitioner.
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Introduction

• Main Reference: Cameron, A. Colin and Pravin K. Trivedi (2005),
Microeconometrics - Methods and Applications, Cambridge University
Press (http://cameron.econ.ucdavis. edu/mmabook/mma.html).

• Companion: Cameron, A. Colin and Pravin K. Trivedi (2022),
Microeconometrics using STATA, second edition, Volume I + II,
STATACorp LP (https://cameron.econ.ucdavis.edu/mus2/).

• Hansen, B. (2022), Econometrics, Princeton University Press
(https://www.ssc.wisc.edu/ bhansen/econometrics/).

• Many books on R, for example Kleiber, C. and Achim Zeileis (2008),
Applied Econometrics with R (Use R!), Springer.
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Introduction

Introduction

Tutorials (two):
• Group 1: Monday (16:15 (s.t.)-17:45) and Tuesday (18:00 (s.t.)-19:30),

(start 09.12.).
• Group 2: Monday (18:00 (s.t.)-19:30) and Tuesday (16:15 (s.t.)-17:45),

(start 09.12.).
• Room: PC-Pool (Monday: computer lab in B9 building, Tuesday:

S56/PC-Pool (RWIEG1.0.00.117)).
• Both held by: Hanna Adam.
• Software: R (https://www.r-project.org/).
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Introduction
Main empirical courses at our chair:
• Bachelor level:

• Empirical Economics I: Introduction, data problems, OLS,
Gauss-Markov-Theorem, heteroskedasticity, correlation versus
causation.

• Empirical Economics II: Stochastic processes, panel data estimators
(SUR, diff-in-diff, fixed effects, random effects), time series econometrics
(autocorrelation, ARMA, (P)ACF, forecasting).

• Master level:
• Advanced Empirical Economics I: Estimation methods (linear and

non-linear least squares, IV, MLE, GMM), applications.
• Advanced Empirical Economics II: “Topic”-courses (e.g., time series

econometrics, program evaluation methods, spatial econometrics,
Bayesian econometrics, empirical international trade, ...).
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Introduction

Introduction

Are you familiar with the following concepts?
• Consistency.
• Bias.
• Limit distribution.
• Asymptotic distribution.
• Omitted variable bias.
• Information matrix.
• Quasi-Maximum likelihood.
• Central limit theorem.
• Law of large numbers.
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Introduction

Introduction

Occurring themes and problems:
• Data are often discrete or censored, in which case non-linear methods

such as logit, probit, and Tobit models are used.
• Distributional assumptions for such data become critically important.
• Economic studies often aim to determine causation rather than merely

measure correlation.
• Microeconomic data are typically collected using cross-section and

panel surveys, censuses, or social experiments.
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Introduction

Occurring themes and problems:
• It is not unusual that two or more complications occur simultaneously.
• Large data-sets (many observations, many explanatory variables).
• Microeconomic/Behavioural foundation, allowing to employ a structural

approach.
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Linear models

Ordinary Least Squares (OLS)
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Linear models

Linear models
• In modern microeconometrics the term regression refers to a

bewildering range of procedures for studying the relationship between
an outcome variable y and a set of regressors x.

• The simplest example of regression is the OLS estimator in the linear
regression model.

• After first defining the model and estimator, a quite detailed
presentation of the asymptotic distribution of the OLS estimator is
given.

• The exposition presumes previous exposure to a more introductory
treatment.

• The model assumptions made here permit stochastic regressors and
heteroskedastic errors and accommodate data that are obtained by
exogenous stratified sampling.
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Linear models

Notation and conventions

Vectors are defined as column vectors and represented using lower-case
bold. For example, for linear regression the regressor vector x is a K × 1
column vector with j th entry xj and the parameter vector β is a K × 1
column vector with j th entry βj , so

x =
(K × 1)

 x1
...

xK

 and β =
(K × 1)

 β1
...
βK

 .
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Linear models

Notation and conventions

Then the linear regression model y = β1x1 + β2x2 + · · ·+ βK xK + u is
expressed as y = x′β + u. At times a subscript i is added to denote the
typical i th observation. The linear regression equation for the i th
observation is then

yi = x′
iβ + ui .

The sample is one of N observations, {(yi ,xi), i = 1, ...,N}. Observations
are usually assumed to be independent over i in the course.
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Linear models

Notation and conventions

Matrices are represented using upper-case bold. In matrix notation the
sample is (y,X), where y is an N × 1 vector with i th entry yi and X is a
matrix with i th row x′

i , so

y =
(N × 1)

 y1
...

yN

 and X =
(N × K )

 x′
1
...

x′
N

 .

The linear regression model upon stacking all N observations is then

y = Xβ + u,

where u is an N × 1 column vector with i th entry ui .
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Linear models

Linear regression model

• In a standard cross-section regression model with N observations on a
scalar dependent variable and several regressors, the data are
specified as (y,X), where y denotes observations on the dependent
variable and X denotes a matrix of explanatory variables.

• The general regression model with additive errors is written in vector
notation as

y = E [y|X] + u, (1)

where E [y|X] denotes the conditional expectation of the random
variable y given X, and u denotes a vector of unobserved random
errors or disturbances.
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Linear models

Linear regression model

• The right-hand side of this equation decomposes y into two
components, one that is deterministic given the regressors and one
that is attributed to random variation or noise.

• We think of E [y|X] as a conditional prediction function that yields the
average value, or more formally the expected value, of y given X.

• A linear regression model is obtained when E [y|X] is specified to be a
linear function of X.
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Linear models

Linear regression model

• y is referred to as the dependent variable or endogenous variable
whose variation we wish to study in terms of variation in x and u.

• u is referred to as the error term or disturbance term in the population.
• x is referred to as regressors or predictors or covariates.
• Note, the sample equivalent of equation

y = Xβ + u, (2)

is
y = Xβ̂ + û, (3)

where û is the residual vector and β̂ is the vector of the OLS estimates.
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Linear models

OLS estimator
• The OLS estimator is defined to be the estimator that minimizes the

sum of squared errors

N∑
i=1

û2
i = û′û =

(
y − Xβ̂

)′ (
y − Xβ̂

)
. (4)

In other words:

min
ˆβ

S(β̂) =
(

y − Xβ̂
)′ (

y − Xβ̂
)
. (5)

• Expanding S(β̂) gives:

min
ˆβ

S(β̂) = y′y − β̂
′
X′y − y′Xβ̂ + β̂

′
X′Xβ̂ (6)

= y′y − 2y′Xβ̂ + β̂
′
X′Xβ̂. (7)
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Linear models

OLS estimator

• The necessary condition for a minimum is given by the first derivative
with respect to β̂ set equal to 0:

∂S(β̂)

∂β̂
= −2X′y + 2X′Xβ̂ = 0. (8)

• Solving for β̂ yields the OLS estimator,

β̂OLS = (X′X)−1 X′y. (9)
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Linear models

OLS estimator

• If X′X is of less than full rank, the inverse can be replaced by a
generalized inverse.

• Then OLS estimation still yields the optimal linear predictor of y given
x if squared error loss is used.

• But many different linear combinations of x will yield this optimal
predictor.
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Linear models

Identification
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Linear models

Identification

• The OLS estimator can always be computed, provided that X′X is
non-singular.

• The more interesting issue is what β̂OLS tells us about the data.
• We focus on the ability of the OLS estimator to permit identification of

the conditional mean E [y|X].
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Linear models

Identification

For the linear model the parameter β is identified if
1 E [y|X] = Xβ.
2 Xβ(1) = Xβ(2) if and only if β(1) = β(2) (implies that X′X is

non-singular), i.e., that β̂OLS is the unique solution of min ˆβ
S(β̂).
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Linear models

Consistency
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Linear models

Consistency

• The properties of an estimator depend on the process that actually
generated the data, the data generating process (dgp).

• We assume the dgp is y = Xβ + u.
• Then:

β̂OLS = (X′X)−1 X′y

= (X′X)−1 X′ (Xβ + u)

= (X′X)−1 X′Xβ + (X′X)−1 X′u

= β + (X′X)−1 X′u.
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Linear models

Excursus: Asymptotic theory
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Linear models

Excursus: Asymptotic theory

• Good, more accessible treatment: van der Vaart, A. W. (1998),
Asymptotic Statistics, Cambridge University Press.

• Thorough discussion: White, H. (2000), Asymptotic Theory for
Econometricians, Academic Press.

• Thorough discussion with focus on dynamic models: Prucha, I., B.
Pötscher (1997), Dynamic Nonlinear Econometric Models: Asymptotic
Theory, Springer, Berlin.
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Linear models

Excursus: Asymptotic theory

• In this excursus we consider the behaviour of a sequence of random
variables bN as N → ∞.

• For estimation theory it is sufficient to focus on two aspects:
1 Convergence in probability of bN to a limit b, a constant or random

variable that is very close to bN in a probabilistic sense defined in the
following.

2 If the limit b is a random variable, we consider the limit distribution.
• Estimators are usually functions of averages or sums. Then it is

easiest to derive limiting results by invoking results on the behaviour of
averages, notably laws of large numbers and central limit theorems.
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Linear models

Excursus: Asymptotic theory

Convergence in probability
• Because of the intrinsic randomness of a sample we can never be

certain that a sequence bN , such as an estimator θ̂ (often denoted θ̂N

to make clear that it is a sequence), will be within a given small
distance of its limit, even if the sample is infinitely large.

• However, we can be almost certain.
• Different ways of expressing this near certainty correspond to different

types of convergence of a sequence of random variables to a limit.
• The one most used in econometrics is convergence in probability.
• Others are: Mean-square convergence, almost sure convergence.
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Linear models

Excursus: Asymptotic theory

Convergence in probability
• Recall that a sequence of non-stochastic real numbers {aN} converges

to a if, for any ϵ > 0, there exists N∗ = N∗(ϵ) such that, for all N > N∗:

|aN − a| < ϵ. (10)

• Example: If aN = 2 + 3/N, then the limit is a = 2 since
|aN − a| = |2 + 3/N − 2| = |3/N| < ϵ for all N > N∗ = 3/ϵ.
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Linear models

Excursus: Asymptotic theory

Convergence in probability
• When more generally we have a sequence of random variables we

cannot be certain of being within ϵ of the limit, even for large N,
because of intrinsic randomness.

• Instead, we require that the probability of being within ϵ is arbitrarily
close to one.

• Thus we require:
lim

N→∞
Pr [|bN − b| < ϵ] = 1, (11)

for any ϵ > 0.
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Linear models

Excursus: Asymptotic theory

Convergence in probability
• A formal definition is the following:

Definition: Convergence in probability
A sequence of random variables {bN} converges in probability to b if, for
any ϵ > 0 and δ > 0, there exists N∗ = N∗(ϵ, δ) such that, for all N > N∗,
Pr [|bN − b| < ϵ] > 1 − δ.

• We write plimbN = b, where plim is shorthand for probability limit, or
bN

p→ b.
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Linear models

Excursus: Asymptotic theory

Consistency
• When the sequence {bN} is a sequence of parameter estimates θ̂, we

have a large sample analogue of unbiasedness, consistency.
• A formal definition is the following:

Definition: Consistency

An estimator θ̂ is consistent for θ0 if plim θ̂ = θ0.

Mario Larch 39 / 427 AEE I, WS 2024/25



Linear models

Excursus: Asymptotic theory
Consistency
• Note that unbiasedness need not imply consistency.
• Unbiasedness states only that the expected value of θ̂ is θ0, and it

permits variability around θ0 that need not disappear as the sample
size goes to infinity.

• Also, a consistent estimator need not be unbiased.
• For example, adding 1/N to an unbiased and consistent estimator

produces a new estimator that is biased but still consistent.
• Although the sequence of vector random variables {bN} may converge

to a random variable b, in many econometric applications {bN}
converges to a constant.

• For example, we hope that an estimator of a parameter will converge
in probability to the parameter itself.
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Linear models

Excursus: Asymptotic theory

Consistency
Slutsky’s Theorem
Let bN be a finite-dimensional vector of random variables, and g(·) be a real-
valued function continuous at a constant vector point b. Then

bN
p→ b ⇒ g(bN)

p→ g(b).

• Slutsky’s Theorem is one of the major reasons for the prevalence of
asymptotic results versus finite-sample results in econometrics.

• It states a very convenient property that does not hold for expectations.
• For example, plim(bN) = plim(b1N ,b2N) = (b1,b2) implies
plim(b1Nb2N) = b1b2, whereas E [b1Nb2N ] generally differs from
E [b1N ]E [b2N ].
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Linear models

Excursus: Asymptotic theory

Laws of large numbers
• Laws of large numbers are theorems for convergence in probability in

the special case where the sequence {bN} is a sample average, that
is, bN = X̄N , where

X̄N =
1
N

N∑
i=1

Xi . (12)

• Note that Xi here is general notation for a random variable, and in the
regression context it does not necessarily denote the regressor
variables.
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Linear models

Excursus: Asymptotic theory

Laws of large numbers
• A law of large numbers provides a much easier way to establish the

probability limit of a sequence {bN} than the alternatives of brute-force
use of the (ϵ, δ) definition.

Definition: Law of large numbers
A (weak) law of large numbers (LLN) specifies conditions on the individual
terms Xi in X̄N under which (X̄N − E [X̄N ])

p→ 0.
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Linear models

Excursus: Asymptotic theory

Laws of large numbers
• It can be helpful to think of a LLN as establishing that X̄N goes to its

expected value, even though strictly speaking it implies the weaker
condition that X̄N goes to the limit of its expected value, since the
above condition implies that:

plim X̄N = limE [X̄N ]. (13)

• If the Xi have common mean µ, then this simplifies to plim X̄N = µ.
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Linear models

Consistency

• To prove consistency we rewrite the expression for β̂OLS as

β̂OLS = β +
(
N−1X′X

)−1
N−1X′u.

• The reason for renormalization in the right-hand side is that
N−1X′X = N−1∑

i xix′
i is an average that converges in probability to a

finite non-zero matrix if xi satisfies assumptions that permit a law of
large numbers to be applied to xix′

i .
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Linear models

Consistency

• Then we may write

plim β̂OLS = β +
(
plimN−1X′X

)−1 (
plimN−1X′u

)
,

using Slutsky’s Theorem (Theorem A.3).
• The OLS estimator is consistent for β (i.e., plim β̂OLS = β) if

plimN−1X′u = 0.

• If a law of large numbers can be applied to the average
N−1X′u = N−1∑

i xiui then a necessary condition for the previous
expression to hold is that E [xiui ] = 0.
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Linear models

Excursus: Asymptotic theory

Convergence in distribution
• Given consistency, the estimator θ̂ has a degenerate distribution that

collapses on θ0 as N → ∞.
• We need to magnify or rescale θ̂ to obtain a random variable that has

non-degenerate distribution as N → ∞.
• Often the appropriate scale factor is

√
N, in which case we consider

the behaviour of the sequence of random variables bN =
√

N
(
θ̂ − θ0

)
.
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Linear models

Excursus: Asymptotic theory

Convergence in distribution
• In general, the Nth random variable in the sequence bN has an

extremely complicated cumulative distribution function (cdf) FN .
• Like any other function FN , this may have a limit function where

convergence is in the usual mathematical sense.

Definition: Convergence in distribution
A sequence of random variables {bN} is said to converge in distribution to
a random variable b if limN→∞ FN = F , at every continuity point of F , where
FN is the distribution of bN , F is the distribution of b, and convergence is in
the usual mathematical sense.
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Linear models

Excursus: Asymptotic theory

Convergence in distribution

• We write bN
d→ b, and we call F the limit distribution of {bN}.

• Convergence in probability implies convergence in distribution; that is,
bN

p→ b implies bN
d→ b.

• In general, the converse is not true.
• For example, let bN = XN , the Nth realization of X ∼ N [µ, σ2].

• Then bN
d→ N [µ, σ2], but (bN − b) has variance that does not

disappear as N → ∞, so bN does not converge in probability to b.

• In the special case where b is a constant, however, bN
d→ b implies

bN
p→ b.

• In this case the limit distribution is degenerate, with all its mass at b.
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Linear models

Excursus: Asymptotic theory

Central limit theorems
• Central limit theorems are theorems on convergence in distribution

when the sequence {bN} is a sample average.
• A central limit theorem provides a simpler way to obtain the limit

distribution of a sequence {bN} than the alternatives such as
brute-force use of convergence in distribution.

• From a law of large numbers, the sample average has a degenerate
distribution as it converges to a constant, limE [X̄N ].

• So we scale
(
X̄N − E [X̄N ]

)
by its standard deviation to construct a

random variable with unit variance that may converge to a
non-degenerate distribution.
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Linear models

Excursus: Asymptotic theory

Definition: Central limit theorem
Let

ZN =
X̄N − E [X̄N ]√

V [X̄N ]
, (14)

where X̄N is a sample average. A central limit theorem (CLT) specifies the
conditions on the individual terms Xi in X̄N under which

ZN
d→ N (0,1), (15)

that is, under which ZN converges in distribution to a standard normal ran-
dom variable.
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Linear models

Excursus: Asymptotic theory

Product Limit Normal Rule

If a vector aN
d→ N [µ,A] and a matrix HN

p→ H, where H is positive definite,
then

HNaN
d→ N [Hµ,HAH′]. (16)
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Linear models

Limit distribution
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Linear models

Limit distribution

• Given consistency, the limit distribution of β̂OLS is degenerate with all
the mass at β.

• To obtain the limit distribution we multiply β̂OLS by
√

N, as this rescaling
leads to a random variable that under standard cross-section
assumptions (see slides 56 and 57) has non-zero yet finite variance
asymptotically.

• Then we may write:
√

N
(
β̂OLS − β

)
=
(
N−1X′X

)−1
N−1/2X′u. (17)
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Linear models

Limit distribution

• The proof of consistency assumed that plimN−1X′X exists and is finite
and non-zero.

• We assume that a central limit theorem can be applied to N−1/2X′u to
yield a multivariate normal limit distribution with finite, non-singular
covariance matrix.

• Applying the product rule for limit normal distributions (Theorem A.17),
i.e., HN =

(
N−1X′X

)−1 and aN = N−1/2X′u implies that the product in
the right-hand side of (17) has a limit normal distribution.
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Linear models

Limit distribution

This leads to the following proposition, which permits regressors to be
stochastic and does not restrict model errors to be homoskedastic.
Distribution of OLS estimator
Make the following assumptions:

1 The dgp is y = Xβ + u.
2 Data are independent over i with E [u|X] = 0 and

E [uu′|X] = Ω = Diag[σ2
i ].

3 The matrix X has full rank so that Xβ(1) = Xβ(2) iff β(1) = β(2).
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Linear models

Distribution of OLS estimator
Make the following assumptions:

4 The K × K matrix

MXX = plimN−1X′X = plim
1
N

N∑
i=1

xix′
i = lim

1
N

N∑
i=1

E [xix′
i ],

exists and is finite non-singular.

5 The K × 1 vector N−1/2X′u = N−1/2∑N
i=1 xiui

d→ N [0,MxΩx], where

MxΩx = plimN−1X′uu′X = plim
1
N

N∑
i=1

u2
i xix′

i

= lim
1
N

N∑
i=1

E [u2
i xix′

i ].
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Linear models

Limit distribution

Hence, the OLS estimator β̂OLS is consistent for β and

√
N(β̂OLS − β)

d→ N [0,M−1
xx MxΩxM−1

xx ]. (18)
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Linear models

Asymptotic distribution
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Linear models

Asymptotic distribution

• So far we have stated the limit distribution of
√

N(β̂OLS − β), a rescaling
of β̂OLS.

• Many practitioners prefer to see asymptotic results written directly in
terms of the distribution of β̂OLS.

• This distribution is called an asymptotic distribution.
• The asymptotic distribution is interpreted as being applicable in large

samples, meaning samples large enough for the limit distribution to be
a good approximation but not so large that β̂OLS

p→ β as then its
asymptotic distribution would be degenerate.
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• The asymptotic distribution is obtained from (18) by multiplication with
N−1/2 and addition of β.

• This yields the asymptotic distribution

β̂OLS

a∼ N [β,N−1M−1
xx MxΩxM−1

xx ], (19)

where the symbol a∼ means is “asymptotically distributed as.”
• The variance matrix in (19) is called the asymptotic variance matrix of
β̂OLS and is denoted V [β̂OLS].
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Asymptotic distribution

• Even simpler notation drops the limits and expectations in the
definitions of Mxx and MxΩx and the asymptotic distribution is denoted

β̂OLS

a∼ N [β, (X′X)−1(X′ΩX)(X′X)−1], (20)

and V [β̂OLS] is defined to be the variance matrix in (20).
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• For implementation, the matrices Mxx and MxΩx are replaced by
consistent estimates M̂xx and M̂xΩx.

• Then the estimated asymptotic variance matrix of β̂OLS is

V̂ [β̂OLS] = N−1M̂−1
xx M̂xΩxM̂−1

xx . (21)

• This estimate is called a sandwich estimate, with M̂xΩx sandwiched
between M̂−1

xx and M̂−1
xx .
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