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Organizational preliminaries

• Prof. Dr. Stefan Napel
– Office hours: Monday, 2–4 pm;

please contact: vwl4@uni-bayreuth.de (Heidi Rossner)
• Downloads and information:

https://elearning.uni-bayreuth.de/course/view.php?id=25099
• Video classes by Alex Mayer & Dominik Welter w/ 1–2 weeks 

delay to lectures; 
hopefully back to two “identical” regular classes per week soon …

• Occasional Q&A sessions with student tutor Christoph Kretschmer
• One-open-book exam will be posed in English; 

can be answered in English or German 
(same for optional midterm exam on June 3, 2020 – if that can be held)
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Textbooks

• The reference (consider buying it):
– Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green (1995). 

Microeconomic Theory. New York, NY: Oxford University Press.
(º MWG)

• Other recommended textbooks:
– Jehle, Geoffrey A., and Philip J. Reny (2011). Advanced 

Microeconomic Theory, 3rd edition. Amsterdam: Addison-Wesley. 
– Rubinstein, Ariel (2012). Lecture Notes in Microeconomic Theory: 

The Economic Agent, 2nd edition. Princeton, NJ: Princeton University 
Press.
[it's free: http://arielrubinstein.tau.ac.il/]

– Varian, Hal R. (1992). Microeconomic Analysis, 3rd edition. New York, 
NY: W. W. Norton & Company.
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Goals and structure

• Goals of this course: 
– Introduce key concepts of advanced microeconomic analysis
– Aid the self study of MWG
– Prepare for possible PhD studies:

we pick a level below a PhD program, but familiarize ourselves with 
the standard textbook
® you may skip the small print and most proofs for now

• Structure follows MWG
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Tentative schedule for lectures

# Date Topic Chs. in MWG
1 20.4. Introduction
2 27.4. Preference and choice 1.A-D
3 4.5. Consumer choice 2.A-F
4 11.5. Classical demand theory 3.A-E, G
5 18.5. Aggregate demand 3.I; 4.A-D
6 25.5. Choice under risk 6.A-D, F
7 8.6. Static games of complete information 7.A-E; 8.A-D, F
8 22.6. Dynamic games of complete information 9.A-B; 12.App. A
9 29.6. Games of incomplete information 8.E, 9.C

10 6.7. Competitive markets 10.A-G
11 13.7. Market power 12.A-F
12 20.7. Question session for exam (® t.b.a.)
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… blood, toil, tears, and sweat

• This course is different …
– Lectures will not provide a self-contained treatment of all material
– Strenuous self-study cannot be avoided

(workload still much lower than in a UK/US research MSc/PhD program; 
NB: 8 ECTS points imply 8 h of homework / week, plus 4 h attendance!)

• Mixture of slides and “chalk & talk”
• Optional midterm exam on June 3, 2020: 

– Two problems on topics of sessions #1 – #6, 
each graded in a binary fashion (“+” or “o”)

– Each “+” earns 5 bonus points for this term’s 60-point final exam 
(and re-sit exam in November 2020)

• Most of what you learn in this course will be learned by doing
problems, i.e., preparing for weekly classes and exams
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1. Introduction

• Microeconomics studies the behavior of individuals or groups, 
how they interact and bring about collective outcomes

• We will look at models of
– Preferences, consumer choice, demand, choice under risk
– Strategic decision making (= game theory)
– Perfectly and imperfectly competitive markets
– Market failure, asymmetric information, and mechanism design
– General equilibrium
– Social choice and welfare
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Models

• “Models” are simplified descriptions of a part of reality 
• Their purposes in economics include

– description per se
– explanation and prediction
– justification
– decision support

• They can be represented in different ways, e.g.,
– verbally
– graphically or mechanically 
– mathematically
– in computer language

• All representations boil down to a system of assumptions, 
axioms, premises, or initial conditions {A1, …, An}

9

Models

• The system of assumptions, axioms, etc. should
– be logically consistent, irreducible, and comprehensible

(A. Einstein: “… as simple as possible, but not simpler!”)
– relevant for the model’s purpose, relate to reality, and have 

at least some empirical support
• The advantage of stating {A1, …, An} mathematically instead of in 

everyday language or software is that the model is particularly
– concise and transparent
– easy to check for consistency
– amenable to formal manipulations and logical deduction

• Mathematical models are constructed with manipulability in mind;
this implies a delicate trade-off with realism
(Danger: “Searching where the light is …”)
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“Searching where the light is …”
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Models and economic theory

• Early philosophers of science (Hempel, Oppenheim) argued that 
the distinctive feature of a theory (vs. a model) is:
at least some Ai is a universal law, i.e., a time and space-
invariant, necessary connection between certain phenomena

• Such requirements would preclude any economic theory …
• Social scientists have to contend themselves with restricted 

regularities or mere tendencies (vs. laws of mechanics)
– e.g., that individuals can usually decide between two available options 

and mostly do so in a consistent fashion
• Economics is harder than physics because it involves inter-

pretation of a reality created by objects of study (individuals, 
firms, …) who themselves base their actions on interpretations 
of reality, possibly influenced by economic theory
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Do economics, not mathematics!

• Most microeconomic analysis uses mathematical language and 
techniques 

• We need to do the maths because even trained economic intuition 
is sometimes wrong:
– One obtains a ‘counter-intuitive’ result doing the maths, and only facing it 

realizes that some (ex post: intuitive) causal effects were overlooked
• It is essential to focus on the economics in what you read and do, 

even though the maths may be more time-consuming
• A good intuition about agents’ economic incentives is more useful 

than superb knowledge of Kuhn-Tucker conditions or semidefinite-
ness of matrices, even in optimization problems

13

1.1 Example

• Consider the following simple microeconomic problem:
– Julian wants to buy spoons and forks
– Each pair of one spoon and one fork gives Julian 1 unit of utility
– A spoon not matched with a fork gives him only a units of utility, where 

0 £ a < ½; a fork not matched with a spoon also gives a
– Let p1 be the price of spoons, p2 the price of forks, 

and w the wealth that Julian plans to spend on spoons and forks
– Assume he wants to get the most utility for each euro he spends

• Find Julian’s demand functions for spoons and forks!
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2. Preference and choice

• The basic constituent of most economic models is the 
neoclassical “economic man” or homo economicus

• He or she is a highly stylized model of real decision makers
• “economicus” refers to “the economic way” of decision making, 

not to the context of decisions
• Broadly speaking, homo economicus is assumed to

– deliberately choose the most suitable means to his or her ends
– evaluate options according to their anticipated consequences 

(decisions are made in the “shadow of the future”)
– weigh the costs and the benefits of a particular choice

… or rather behave “as if” he or she would be doing so
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Preliminary remarks

• While the rationality embodied by homo economicus is the key 
assumption of most of modern economics, it should not be 
taken too literally

• Hardly any economist thinks that real people are as deliberate, 
future-oriented, and clever as is conventionally assumed

• Most would hold that people are behaving as if they were 
“economically rational” sufficiently often to derive useful 
conclusions from correspondingly pragmatic models

• See
– Ariely, Dan (2008). Predictably Irrational. London: Harper Collins.

– Kahneman, Daniel (2011). Thinking, Fast and Slow. New York: 
Farrar, Straus and Giroux. 

for illuminating accounts of the “biases” of real decision makers
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Choosing between several alternatives
• Consider an agent who needs to choose between several actions
• Suppose each action is associated with a particular outcome, and 

these outcomes are all that the agent cares about
• Denote the set of all possible, mutually exclusive outcomes (or 

options or alternatives) by X
– Options can be very concrete, like 

X = {go to law school in Berlin, study economics in Bayreuth, ...}, 
or, for us, abstract like X = {x,y,z}

• Economics presumes that whenever choosing from the subset 
X’ Í X, the agent picks an option x Î X’ which serves his or her 
goals best (whatever they may be…)

Þ If we observe that the agent chooses x from X’, we conclude that x
was amongst the best options in X’ for this agent
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2.1 Preferences vs. choice rules
• There are two main approaches to modeling choice behavior:

– Binary preference relations
– Choice rules

• Preference relations are less general, but more handy
(with further restrictions imposed to make them even more handy, 
e.g., to allow representation by a utility function)

• Observing the choice of x when X’ was available reveals that 
x is weakly preferred to any other element y Î X’ when a choice 
must be made from X’

• The preference approach entails the simplifying assumption:
x is weakly preferred to y independently of the presence or 
absence of any other alternatives z Î X, i.e., also when a choice 
must be made from X’’¹ X’
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Preference relations
• Given such context-independence, an agent’s full choice behavior 

is well-defined by her choices from binary subsets X’ = {x, y}
• When x is weakly preferred to y, we write: x % y
• % gives (some) pairs of elements x, y Î X a specific connection;

it is known mathematically as a binary relation
• A binary relation is formally just a subset of X ´ X;

some authors write (x,y)Î % instead of x % y
(BTW: a function f: X® Y can similarly be viewed as a subset of X ´ Y)
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Other relations derived from %

• If sometimes x and sometimes y is chosen out of X’ = {x, y}, then 
the agent is said to be indifferent between x and y, i.e., 

x % y Ù y % x Û:  x ~ y
• If the agent (weakly) prefers x over y and is not indifferent, he is 

said to strictly prefer x over y, i.e.,
x % y Ù ¬(y % x)  Û:  x ! y

• x ! y is equivalent to saying:
“The agent never chooses y when x is available”
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Rational preferences
• Economics does not care about why somebody prefers x to y; 

neither does it proclaim which option the agent should prefer
• The common requirement for calling an individual rational is that 

her choices reflect preferences that are “complete” and “transitive”
• Complete means that for any two options x, y Î X, the agent either 

weakly prefers x or weakly prefers y or both, i.e.,
"x, y Î X:  x % y Ú y % x

• Completeness formalizes that the agent can reach a decision 
facing any binary choice problem

• Transitive means that a preference for x over y  together with a 
preference for y over z also entails a preference for x over z, i.e.,

x % y Ù y % z  Þ x % z 
• Transitivity rules out cycles, which would, e.g., preclude a decision 

facing X’ = {x, y, z}
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Violations of transitivity
• An argument against persistent intransitivity of real people is that 

one might (or the market would) ruin them with a money pump:
– Suppose your colleague has intransitive preferences:

apple ! banana ! citrus fruit ! apple
– Give him an apple for free
– Then offer to sell him a citrus fruit for the apple and, e.g., 1 cent; 

he will accept because he strictly prefers the citrus fruit
– Next sell him a banana for the citrus fruit and 1 cent
– Now sell him an apple for the banana and 1 cent, and repeat the cycle …

• However, this ignores transaction costs, and the possibility that an 
intransitivity may be corrected (only) if someone exploits it

• Intransitivity is normal when alternatives are very finely graded:
– "kÎN0: coffee with k grains of sugar ~ coffee with k+1 grains of sugar 
Þ coffee without sugar ~ coffee with 100g of sugar ?

Advanced Microeconomics I 

2.2 Utility representation
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2.2 Utility representation

• If set of alternatives X is finite (or countably infinite) and the agent 
has a complete and transitive preference relation % over it, 
then the agent‘s preferences over X can be represented by a 
utility function u : X ® R,
i.e., we can find real numbers u(x) such that  

x% y Û u(x) ≥ u(y)
• Note that if u(×) represents the agent’s preferences, then so does 

any v(×) which is a strictly increasing transformation of u(×)
• The latter implies that the difference or ratio between utility levels 

of x and y do not mean anything:
u(×) only allows conclusions about the order of x and y, and is 
therefore called an ordinal utility function
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Utility representation

• If the set of alternatives X is uncountably infinite, then complete-
ness and transitivity of a preference relation are not sufficient to 
guarantee existence of a utility representation

• In particular, lexicographic preferences % L over bundles of two 
goods (x1, x2) Î R+

2, defined by

(x1, x2) !L (y1, y2) :Û x1 > y1 Ú
{ x1 = y1 Ù x2 > y2 },

and

(x1, x2) ~L (y1, y2) :Û x1 = y1 Ù x2 = y2 
do not possess a utility representation
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Utility representation

• A preference relation % is called continuous if
whenever xk% y (resp. y % xk) holds for all elements xk of a sequence 
{xk}k=1, 2, … with limit point x*
then x*% y (resp. y % x*) holds too

• Continuity rules out that negligible changes completely reverse 
the ordering of two options:
– Lexicographic preferences rank xk =(2+1/k, 1) strictly higher than 

y=(2, 2) for every k = 1, 2, …
– The limit point x* =(2,1), however, is ranked strictly lower than (2, 2)

• A key result in decision theory:
If % is a complete, transitive, and continuous preference relation 
on the arbitrary set of outcomes X, then 
– % can be represented by an ordinal utility function u : X ® R
– u(×) can be chosen to be continuous 

(but not necessarily also differentiable, or even C1, C2, etc.)
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Remarks

• Economic rationality itself does not require existence of a utility 
representation of an agent’s preferences 

• Only for convenience is economic rationality sometimes equated 
with utility-maximizing behavior, but inaccurately so

• In any case, assuming utility maximization does not require 
agents to “know their utility function” and “try to maximize”;
as it happens, if their preferences satisfy completeness and 
transitivity (plus continuity), they act exactly as if they did …

• Use of a particular utility function (e.g., u(x1,x2)=x1+x2) amounts 
to an additional assumption on top of that of a homo economicus
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Further remarks

• Preferences are individual characteristics that economists take as 
given and fixed

• We tend to ignore preferences’
– origin or causes 
– intensity
– possible dynamics 

• There is, however, also economic research that investigates 
preference saliences, likely mechanisms of preference change, 
and their effects on decisions in markets or outside

• A key problem of changing / reference-dependent preferences is 
the welfare interpretation of outcomes

Advanced Microeconomics I 

2.3 Choice rules
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2.3 Choice structures and choice rules

• Recall that the move from observing choice x from X’ towards a 
binary preference relation entailed a presumption of context-
independence regarding greater desirability of x than y Î X’

• If one does not want to impose this restriction, one can work with 
so-called choice structures

• A choice structure (B , C(⋅)) has two ingredients:
– B Í 2X is a family of nonempty subsets of X; 

elements B ∈ B are called budget sets, 
B is meant to describe all choice experiments that could be posed to 
the decision maker, or on which we have data

– The so-called choice rule or choice correspondence C(⋅) maps each 
budget set B ∈ B to a (nonempty) subset C(B) Í B; 
it lists all alternatives that the decision maker might choose from B 
(i.e., he finds equally acceptable from B)
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Example

• Suppose that X ={BT, KU, N} and B = {{KU, N}, {BT, KU, N}}
• A possible choice structure is (B , C1(⋅)), where 

– C1({KU, N}) = {KU} 
– C1({BT, KU, N}) = {KU}

®Kulmbach is his preferred location no matter what other 
alternatives are in the budget set

• Another possible choice structure is (B , C2(⋅)), where 
– C2({KU, N}) = {N} 
– C2({BT, KU, N}) = {KU}

®She prefers the location in the budget set which is second-
closest to Bayreuth
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Weak axiom

• A common restriction on choice structures (B , C (⋅)), which rules 
out behavior of the latter kind, is the weak axiom of revealed 
preference (WARP or WA):
– If x is chosen for a BÎB that also contains y,

and y is chosen for another B'ÎB that also contains both,
then x must be equally acceptable in B', i.e.,
x,yÎB, xÎC(B)   and   x,yÎB', yÎC(B')   Þ xÎC(B') 

• We interpret the existence of a budget set B3x,y with xÎC(B) as:  
“x is revealed weakly preferred to y (for some budget set)”

• So WARP more simply says:
– If x is revealed weakly preferred to y, 

then y cannot be revealed strictly preferred to x
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Relation between preferences and choice rules (1)

• Two natural questions arise about WARP:
1. If a decision maker has a rational preference ordering ≿, do her 

choices – when facing budget sets in B – necessarily satisfy WARP?
2. If an individual's choice behavior for budget sets B is captured by a 

structure (B, C(⋅)) that satisfies WARP, does a rational preference 
relation ≿ exist which is consistent with these choices (i.e., which 
rationalizes C(⋅) relative to B)?
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Relation between preferences and choice rules (2)

• Both questions can basically be answered affirmatively:
1. A choice structure which is generated by a rational preference ordering 

≿ automatically satisfies WARP
2. That a choice structure (B, C(⋅)) satisfies WARP is sufficient for exist-

ence of a (unique) preference relation ≿ which rationalizes it if B
includes all subsets X' Í X with |X'| £ 3 
(only then does WARP guarantee transitivity)

• So, if choices are defined on all subsets of X and satisfy WARP, 
then both preference and choice rule-based approaches to 
modeling behavior are equivalent

• NB: Consumer decisions described by a demand function x(p,w) 
are defined only for special subsets of X;
then stronger properties than WARP are needed to guarantee 
rationalizability of choices (in the economic sense)

Advanced Microeconomics I 

3. Choice-based demand
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3. Choice-based demand theory

• Now study homo economicus as a consumer in a competitive 
market economy;
adopt a choice-based perspective (« preference-based in 4.)

• Choice of quantities of goods or services provided by the market, 
called commodities, subject to physical and economic constraints

• Any particular quantity combination (x1, x2, …, xL) of L different
commodities corresponds to a point x in commodity space RL

• Definition of the relevant commodities comes with great flexibility: 
same good delivered at different points in time, different locations, 
or in distinct ‘states of the world’ are just different commodities

• Physical restrictions on bundles that the individual can consume 
are reflected by restricting RL  to a consumption set X Í RL
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Divisibility and price taking

• For simplicity, we consider R+L  as agents’ consumption set;
this is a convex set, i.e., we assume perfect divisibility

• We also assume the existence of a complete market, 
i.e., every commodity i = 1, …, L is traded 
(property rights are well-defined for every relevant good)

• The considered consumer is presumed to be a price taker, 
i.e., cannot affect prices by his decisions

• Suppliers use linear price schemes, i.e., sell at constant unit price
(vs. non-linear pricing: two-part tariffs, quantity discounts, …),
e.g., because there is perfect competition

• For convenience, let the price of any good i be positive, 
i.e., pi > 0 for i = 1, …, L
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3.1 Walrasian budget sets

• The economic constraint faced by the agent is that he must 
afford any commodity bundle x Î R+L which he intends to pick,
i.e., for a given price vector p Î R+L total expenditure 

p×x := p1x1 + … + pLxL
cannot exceed wealth w > 0

• The set of affordable, physically feasible bundles for given p
and w is the consumer’s Walrasian or competitive budget set

Bp,w := {x Î R+L: p×x £ w}
• The consumer’s choice problem is thus:

“Choose a consumption bundle x from Bp,w“
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Budget hyperplane

• The set {x Î RL: p×x = w}  is known as the budget line; 
or for L>2 as the budget hyperplane;
it is the upper boundary of Bp,w

• It’s respective intercepts are w/pi, i.e., the maximal affordable 
quantity if only good i is purchased

• The fact that p×x = w and p×x’ = w  for any two points x and x’ 
on the budget hyperplane implies that p is orthogonal to it
[Recall that the dot product of any vectors x, y Î RL satisfies:

x×y = |x|×|y|×cos(q)
where q is the angle between x and y;
in particular, x×y = 0 iff x and y are orthogonal]
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3.2 Walrasian demand

• Set BW = { Bp,w: pÎR++L Ù w>0 } is just a family of budget sets

• At least in principle, we can observe a consumer’s choices 

C(B) Í B for any budget set B=Bp,w ∈ BW
• These choices are called the (Walrasian) demand of the consumer 

and we refer to

x(p, w) := C(Bp,w)

as the consumer’s Walrasian demand correspondence
• We often focus on case in which C(Bp,w) is singleton-valued, i.e., 

the consumer picks a unique element in any Walrasian budget set

• x(p, w) is then called the Walrasian demand function 
(w/o brackets around {x*} )
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Homogeneity of Walrasian demand

• A function f: X ® Y (analogously, a correspondence F: X ¶ Y) 
between vector spaces X and Y is called 
homogeneous of degree r Û "l>0: "xÎ X:  f(lx) = lr ×f(x)

• Demand is homogeneous of degree zero iff x(lp, lw) º x(p, w), 
i.e., when prices and wealth all change by the same factor
then demand does not change (® only relative prices matter)

• We will assume that the individual cares only about the 
commodities, and doesn’t suffer from money illusion

ÞChoice depends only on which bundles are affordable and so 
the fact that  Bp,w º Blp,lw implies  x(lp, lw) º x(p, w)
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Homogeneity of demand and numeraire good

• Given that we can scale prices and wealth up or down by l>0 
without affecting demand, it is often convenient to normalize 
such that w = 1 or such that pi = 1 for some good i

• In the latter case, all prices and wealth are expressed in units of
good i, which is then called the numeraire good 
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Walras‘ law

• We say that a Walrasian demand function (or correspondence) 
x(p, w) satisfies Walras’ law or is budget balancing iff it is an 
element of the budget hyperplane for all p and w, i.e., 

x = x(p, w)   Þ p×x = w
(or x Î x(p, w))

• Walras’ law says that the consumer fully expends his wealth
• When understood in a broad way (e.g., as applying to the entire 

lifetime of an agent, with bequests viewed as commodities, too), 
this does not amount to a very restrictive assumption
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3.3 Comparative statics w.r.t. wealth

• How do observed choices vary with changes in wealth and prices?
• Examination of outcome changes due to a change in underlying 

economic parameters is known as comparative statics analysis
• The wealth effect for good i at (p, w) is simply ¶xi(p, w)/¶w
• Commodity i is normal at (p, w) if the wealth effect for it is positive, 

i.e., demand increases in wealth;
i is inferior at (p, w) if the wealth effect is negative

• If all commodities are normal at all (p, w), demand is called normal
• If we fix prices p’ then x(p’, w) is called the consumer’s Engel 

function and xi(p’, w) his Engel curve for good i;
the image of x(p’, w) is known as the wealth expansion path
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Comparative statics w.r.t. prices

• Derivative ¶xi(p, w)/¶pk is the price effect of pk on demand for 
good i at (p, w);
the Jacobian matrix Dpx(p, w) collects these in a compact form

• Good i is said to be a Giffen good at (p,w) if ¶xi(p, w)/¶pi > 0, 
i.e., a drop in i’s price reduces the demand for it

• Under WARP and Walras’ law, a commodity can only be Giffen
if it is also (very) inferior, 
e.g., very low-quality good purchased by a poor consumer

• We commonly plot xi(p, w) as a function of pi for fixed p-i and w; 
the image of x(p, w) in, e.g., x1-x2-space when only pi is varied 
is known as an offer curve



Advanced Microeconomics I 

3.4 Rationalizing x(p, w)

47

3.4 Minimal condition for rationalizing demand

• BW = { Bp,w: pÎR++L Ù w>0 }  and x(p, w) define a choice structure

• If x(p, w) is single-valued, i.e., a function, then WARP becomes:

p×x(p’, w’) ≤ w Ù x(p’, w’) ≠ x(p, w) Þ p’×x(p, w) > w‘

• That is: 
If x(p’, w’) is affordable in price-wealth situation (p, w) but ignored, 
then choice of x(p’, w’) at (p’,w’) requires that x(p, w) would blow 
the budget in situation (p’,w’)
(If x(p, w) is revealed preferred to x(p’, w’) then x(p’, w’) must not be revealed 
preferred to x(p, w)! – Choice of x(p’, w’) at (p’, w’) would reveal so if x(p, w) 
were also affordable at (p’, w’).) 

• NB: 
WARP is not sufficient to conclude that demand can be 
rationalized by a preference relation over commodity bundles 
(why?)
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Slutsky wealth compensation

• A price change has two effects:
1. It alters the relative price of different commodities
2. It changes the consumer’s real wealth (affordability)

• Weak axiom restricts demand changes in response to price 
changes when taking affordability into account

• One can isolate the effect of relative price changes by adjusting 
the budget in a way that keeps the baseline bundle just 
affordable, i.e., consider w’ = p’×x(p, w)

• This adjustment is known as a Slutsky wealth compensation, 
resulting in Slutsky compensated price changes
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WARP » compensated law of demand

• Provided that the Walrasian demand function x(p, w) is 
homogeneous of degree zero and satisfies Walras’ law, WARP 
is equivalent to the compensated law of demand (CLD):

x(p, w) satisfies WARP
Û For any compensated price change from (p, w) to

(p’, w’) = (p’, p’×x(p, w)), 
we have

(p’ - p) × [x(p’, w’) - x(p, w)] ≤ 0
with strict inequality whenever  x(p’, w’) ≠ x(p, w)

• This ‘law’ implies that price pi and compensated demand xi
always move in opposite directions;
Dp = (p’ - p) = (0, …, 0, Dpi, 0, …, 0) implies Dpi Dxi £ 0

• Question:
Should the same be true for uncompensated demand?
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Substitution and income effects 

• Let us fix a reference bundle z = x(p0, w0) and look at the 
Slutsky compensated demand function xs(p, z) º x(p, p×z)

• As prices vary, xs(p, z) changes;
this change reflects a pure substitution effect: 
the consumer responds to new relative prices, while his real 
wealth has stayed constant (in the sense of z still being 
affordable)

• A change Dxi in uncompensated demand can be decomposed 
into such a (virtual) substitution effect Dxi sub. and the income 
effect Dxi inc. from the (virtual) change in income from p×z to w0

• Taking the derivative of xis(p, z) º xi(p, p×z) w.r.t pk at p0, one 
obtains the Slutsky equation

¶xis(p0, z)/ ¶pk = ¶xi(p0, w0)/¶pk + ¶xi(p0, w0)/¶w ×xk(p0, w0) 
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Slutsky matrix

• These pure substitution effects (of a change in pk on demand for 
commodity i) can be collected in an L´L-matrix, known as the 
substitution or Slutsky matrix S(p, w)  [= Dpxs(p, z) with z = x(p, w)]

• Multiplying  ¶xi
s(p, z)/¶pk with the change Dpk for k=1, …, L and 

adding these changes up, we obtain the total change Dxi
caused by a compensated price change Dp (infinitesimal units)

• Doing this for all i = 1, …, L, we get the change in compensated 
demand Dx = S(p, w)Dp caused by price change Dp

• The compensated law of demand, namely Dp × Dx ≤ 0, thus 
requires that 

Dp × S(p, w)Dp ≤ 0

holds for any Dp Î RL
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Negative semidefiniteness of Slutsky matrix

• So the assumptions of Walras’ law, homogeneity of degree zero, 
and WARP (↔CLD) imply that above quadratic form is never 
positive, i.e., S(p, w) is negative semidefinite
(mathematicians sometimes restrict the term to symmetric matrices; 
but symmetry of S(p, w) is not implied by Walras’ law, WARP and 
homogeneity for L>2)

• Negative semidefiniteness requires that, in particular, si,i = ¶xis/¶pi
is non-positive for every i 
(echoing that the compensated law of demand requires Dpi Dxi £ 0)

• Given that the virtual substitution effects ¶xis(p, z)/¶pk can be 
inferred from real and, at least in principle, observable price and 
wealth effects at (p, w), the joint hypothesis of a consumer’s 
behavior satisfying Walras’ law, homogeneity of degree zero, and 
WARP can be tested empirically
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Remarks

• Negative semidefiniteness of S(p,w) is a necessary implication of 
WARP (given Walras’ law and homogeneity), but not yet sufficient 
to guarantee that a differentiable demand function satisfies WARP
(sufficiency requires that Dp×S(p, w)Dp ≤ 0 holds strictly if Dp is not 
proportional to p)

• A theory of consumer demand based on the assumption of 
homogeneity of degree zero, Walras’ law, and WARP is a bit less 
restrictive than one based on rational preference maximization;
as we’ll see in next chapter, the latter forces the Slutsky matrix to 
be symmetric at all (p,w)
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4. Preference-based demand theory
• The classical approach to consumer theory tries to explain 

demand by rational preferences % over commodity bundles 
[vs. description of choices from Walrasian budget sets by (BW, x(×)) ]

• We’ll assume that % can be represented by a utility function u, 
and that u is sufficiently “smooth”/differentiable

• A rational consumer’s demand can be seen as the result of
– maximizing utility under the constraint that a given budget is not blown

or of 
– minimizing expenditure under the constraint of a target utility level

• The latter perspective will be useful for comparing individual 
welfare across different price vectors (e.g., policy interventions)
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4.1 Preference relations and utility
• Many qualitative properties of % imply analogue properties of u:

– % is monotone :Û {y ≥ x Ù y ≠ xÞ y Â x}

Û u is strictly increasing

– % is locally nonsatiated
:Û "xÎX: "e > 0: $yÎUe(x): y Â x;

this is implied by monotonicity

– % is convex :Û upper contour sets {yÎX: y % x} are convex

Û {y % x Ù z % xÞ"aÎ(0,1): ay + (1-a)z % x}

Û u is quasiconcave*

– % is strictly convex
:Û {y%xÙz%xÙy≠zÞ"aÎ(0,1):ay+(1-a)zÂx}

Û u is strictly quasiconcave

*:Û upper level sets {xÎX: u(x) ³ a} are convex for all aÎR
Û "x ≠ y: "lÎ(0,1): u(lx+(1-l)y) ³ min{u(x), u(y)}
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4.1 Preference relations and utility
– % is homothetic :Û {x ~ yÞ "a≥ 0: ax ~ ay}

Û $u: u is homogeneous of degree 1*
– % is quasilinear w.r.t. good i

:Û {good i is desirable** Ù
x ~ yÞ"aÎR: (x+aei) ~ (y+aei) }

Û $u: u(x) = xi + f(x-i)

*: Û"x: "l>0: u(l×x) = l×u(x)
**: Û"x: "a>0: (x + aei) Â x
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4.2 Utility maximization problem
• If all pi > 0 and u is continuous, then the consumer’s utility 

maximization problem
max u(x)        s.t.  p×x ≤  w                          (UMP)

has a solution (® extreme value theorem), namely, the consumer’s 
(Walrasian or Marshallian) demand x(p,w) 

• Assume u represents locally nonsatiated preferences %
then x(p,w)
- is convex-valued if u is quasiconcave (% convex)
- is singleton-valued, i.e., a function, and continuous at all (p,w)À0 if 

u is strictly quasiconcave (% strictly convex)
- satisfies Walras‘ law and is homogeneous of degree 0 

• NB: Lagrange multiplier in (UMP) is the marginal utility of wealth 

• The utility value of (UMP), v(p,w) := u(x(p,w)), is the consumer’s 
indirect utility function

x ≥ 0
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4.3 Expenditure minimization problem
• The expenditure minimization problem

min  p×x s.t. u(x) ³ u’ (EMP) 

is related to (UMP), often called its “dual problem”
• Its cost value e(p, u’) is the consumer’s expenditure function
• Analogously to a firm‘s cost function, if u is continuous and %

locally nonsatiated then e(p, u’) is strictly increasing in u’, 
homogeneous of degree 1 in p, nondecreasing in pi, and 
weakly concave in p
(intuition for the latter: 1. linearly raise expenditure by sticking to the old 
consumption quantities at new prices; 2. lower costs by re-optimizing)

• Note that e(p, v(p, w)) = w  and v(p, e(p, u’)) = u’

x ≥ 0 
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Hicksian demand
• (EMP)‘s solution bundle(s) constitute the Hicksian demand (or 

Hicks compensated demand) h(p, u’)
• For strictly convex % , h(p, u’) is a function;

it is homogeneous of degree zero in p, and satisfies the 
compensated law of demand 

(p’ - p)[h(p’, u) - h(p, u)] ≤ 0

• Goods l and k are called substitutes if ¶hl(p, u)/ ¶pk > 0
• Goods l and k are called complements if ¶hl(p, u)/ ¶pk < 0
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4.4 Hicksian demand and expenditure function
• Even though Hicks compensation (keeping utility constant) and 

Slutsky compensation (keeping the old bundle affordable) 
produce different demand changes for a discrete price change, 
they coincide for marginal price changes

• In particular, the Slutsky matrix S(p,w) equals the Jacobian of 
both x(p, p×x(p,w)) and h(p,v(p,w)) w.r.t. p

• Note that e(p, u’) = p×h(p, u’) implies 
¶e(×)/¶pi = hi(p, u’)

(where [+ S pj ∙ ¶hj/¶pi ]= 0 because (h1*, …, hL*) is chosen optimally, i.e., 
pj=l-1×¶u/¶xj|xj=hj(×), and so […] equals l-1 × total utility change from quantity 
adjustment which, for constant u’, must be zero)

• So the marginal expenditure change that is required to keep 
utility constant after a change of pi is just equal to current 
quantity consumed of good i
(this mimicks Shepard’s lemma in the theory of production)
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Symmetry of (UMP)/(EMP)-implied Slutsky matrix
• Assuming e(p, u’) is twice continuously differentiable, we have

¶2e(×)/ ¶pi ¶pj = ¶hi(×)/ ¶pj = ¶hj(×)/ ¶pi 

or in matrix notation
D2

p e(p, u’) = Dp h(p,u’) = S(p,e(p,u’))
• So the Hesse matrix D2

p e(p, u’) =S(p,e(p,u’)) is symmetric, 
i.e., the Slutsky matrix is symmetric

• Since e(p, u’) is concave in p, Slutsky matrix must moreover be 
negative semidefinite

Ø Preference-based (or utility-maximizing) demand implies 
negative semidefiniteness and symmetry of the Slutsky matrix;
hence it is more restrictive than choice-based demand 
satisfying Walras‘ law, WARP and homogeneity of degree zero
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Remarks
• Revealed choice-based demand can be rationalized if it 

satisfies Walras’ law and WARP (Þzero-homogeneity) and has 
a symmetric substitution matrix
(latter is equivalent to satisfying Houthakker’s SARP instead of WARP)

• That the derivative of (EMP)‘s value function is simply (EMP)‘s 
solution vector cannot have a direct equivalent in the (UMP):

indirect utility v(p,w) is ordinal while x(p,w) is cardinal

• But there exists a close analogue, in which marginal (indirect) 
utility is “normalized”, known as Roy‘s identity

• This makes indirect utility functions convenient to work with: 
demand can be computed w/o solving an optimization problem
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4.4 Individual welfare evaluation
• We can evaluate whether a consumer is better off under price 

vector p‘ or p‘‘ by checking if v(p‘,w) - v(p‘‘,w) is positive or 
negative

• Recall that we obtain an equivalent (indirect) utility function ũ  
(ṽ) if we apply a strictly increasing transformation to u (v);                   
e.g., e(p’, v(p,w)) is also an indirect utility function

• It is money metric: evaluates p-vectors by the euro amount that 
the consumer would need to get (p,w)-situation utility under 
fixed reference prices p’:
- If under p’, say, 100€ would be needed to obtain utility v(p0,w) 

while 120€ would be needed to obtain v(p1,w), then welfare can, 
loosely speaking, be said to be 20€ higher for p1 than for p0



70

Compensating variation
• Suppose we want to use e(p’, v(p,w)) in order to quantify the 

change in a consumer’s welfare caused by going from p0 to p1:
what should be the reference price p’?

• One natural choice is p‘ = p1, i.e., we use new prices as our 
reference

• The change CV(p0, p1,w) := e(p1, v(p1,w)) - e(p1, v(p0,w))
= w - e(p1, v(p0,w))

is known as the compensating variation
• It measures the welfare effect of p0 ® p1 on the consumer by 

answering the question: 
How much money could be extracted from the consumer (would 
need to be paid to her) under the more (less) favorable p1 in 
order for her to be indifferent to the change, i.e., to be fully 
compensated under the new situation? 

71

Equivalent variation
• Another natural choice is p‘ = p0, i.e., we use old prices as our 

reference
• The change EV(p0, p1,w) := e(p0, v(p1,w)) - e(p0, v(p0,w))

= e(p0, v(p1,w)) - w
is known as the equivalent variation

• It measures the welfare effect of p0 ® p1 on the consumer by 
answering the question: 
How much money would need to be paid to the consumer 
(could be extracted from him) under p0 in order for him to be 
indifferent to the change to a more (less) favorable p1, i.e., to 
render the old situation equivalent to the prospective new one? 
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Consumer surplus
• If p0 and p1 differ only in the price of a normal good i then

CV(p0, p1,w) < DCS < EV(p0, p1,w) 
where DCS is the change in (Marshallian) consumer surplus

• CS adds up marginal willingness to pay for all units of good i
(from 0 up to xi(p,w)) and subtracts actual payment for xi(p,w): 
- Denote by pi(xi) good i’s price s.t. consumer would buy xi units 

(given p-i and w)
- She’d strictly prefer to buy the last marginal unit of total xi if pi < pi(xi) 

but is indifferent if pi = pi(xi), i.e., MWTPi(xi) = pi(xi)
• Remark: 

As MWTPi(xi) and DCS relate to uncompensated demand, 
interpretation is complicated by income effects;  
if multiple prices change, product-specific CS-changes cannot 
meaningfully be added 

73

CV, EV, and consumer surplus

• If there is no wealth effect for good i (e.g., % is quasilinear w.r.t 
some good j ≠ i, so that any extra utility from w­ comes via xj­), 
then hi(p,u1) = hi(p,u0) and all three measures coincide

pi0

pi1

hi(pi,p-i,u1)

hi(pi,p-i,u0)

xi(pi,p-i,w)

CV

DCS

EV

xi
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5. Aggregate demand
• Aggregate demand in an economy is readily obtained by adding 

individual demand xi(p,wi) across all individuals, i.e.,
x(p,w1, …, wI) = Si xi(p,wi)

• Tracking the wealth vector (w1, …, wI) in, e.g., comparative 
static analysis is cumbersome; 
one is tempted to work with aggregate wealth w = Si wi and to 
pretend that x(p,w) is the demand of a single agent

• This raises questions:
- When is it possible to work with w instead of the full wealth 

distribution (w1, …, wI)?
- Assuming that individual demands are preference-based and (p,w) 

determines aggregate demand, are the choices x(p,w) compatible 
with existence of a single rational representative consumer?

- Can the representative consumer’s (money-metric) indirect utility 
function be used for welfare statements?
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5.1 When doesn‘t the wealth distribution matter?
• Total demand x(p,w1, …, wI) =  Si xi(p,wi) can be expressed as a 

function x(p,w) of total wealth w = Si wi only in special cases
• Distribution independence requires that individual wealth effects 

exactly cancel out as we shift Dw between consumers i and j, i.e.,

¶xik/¶w |(p,wi) = ¶xjk/¶w |(p,wj) for all k and arbitrary i, j wi, and wj

• This necessitates that consumers (for the relevant wealth range) 
have parallel straight lines as their wealth expansion paths

• That turns out to be equivalent to each %i admitting a utility 
representation s.t. indirect utility functions are of the Gorman form

vi(p,wi) = ai(p) + b(p)∙wi

with identical wealth multiplier b(p) for all i
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Cases when x(p,w1, …, wI) = x(p,w)
• This is the case (mainly) if 

- all %i equal the same homothetic %
(e.g., Cobb-Douglas, perfect substitutes, or complements) 

or
- all %i are quasilinear w.r.t. the same good k and we only consider 

sufficiently big wealth levels
• We can also, trivially, drop (w1, …, wI)  and simply write x(p,w) if

each wi can be expressed as a function wi(p,w) of p and w
(e.g., because of wealth redistribution according to a particular given rule, 
or as an empirical “regularity“)
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• Even when Si xi(p,wi) = x(p,w):
that each xi(p,wi) satisfies WARP, or results from a rational %i, 
does not guarantee that Si xi(p,wi) satisfies WARP, or comes from 
a “representative“ rational %

• WARP (≙ compensated law of demand) doesn‘t “aggregate“: 
a price-wealth change that is compensated for the aggregate may 
fail to be compensated for some individuals …

• The stronger uncompensated law of demand (ULD)
(p’ - p)∙[xi(p’,wi) - xi(p,wi)] ≤ 0

does aggregate when wi º ai ∙w
• So, if all xi(∙) satisfy ULD (and hence also CLD), x(∙)-induced 

choice structure will satisfy WARP (example: all %i are homothetic)

5.2 Aggregate demand ≟ demand of a single %
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Positive representative consumer

• We say that a positive representative consumer exists for a 
given economy if one can find a fictional individual whose 
optimal behavior would result in aggregate demand
x(p, w1,…, wI) if she could spend the society‘s budget w = Swi

• Existence requires that 
- distribution (w1,…, wI) doesn’t matter, so that x(p,w1,…, wI) = x(p,w)
and
- x(p,w) satisfies WARP 

(in fact, even Houthakker‘s SARP)
• Note that it is also possible that aggregate demand satisfies 

more stringent ‘consistency requirements’ than individual 
demands: individual violations of, say, ULD may “average out“
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5.3 Aggregate welfare evaluation



82

• A social planner, who evaluates different (p,w)-situations for 
society as a whole, presumably looks at a (Bergson-Samuelson) 
social welfare function W: RI →R which is defined on (indirect) 
utility vectors (u1, ..., uI) and is non-decreasing in every ui

• Prominent examples: 
- utilitarian welfare WU(u1, ..., uI) = Si ui
- “Rawlsian” welfare WR(u1, ..., uI) = min{u1, ..., uI}

• Note that such a social aggregation rule implicitly requires 
interpersonal comparability of utility

5.3 Aggregate welfare evaluation
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• To what extent can social welfare evaluation be simplified to 
individual welfare evaluation for the representative consumer?

• Answer depends on the considered social welfare function
• The positive representative consumer with preferences % is 

called a normative representative consumer relative to social 
welfare function W(∙) if the value function W*(p,w) of the 
planner‘s welfare maximization problem 

maxw1,…, wI W(v1(p,w1),..., vI(p,wI))
s.t. Swi ≤ w,

is an indirect utility function for %,
i.e., if the representative consumer‘s demand corresponds to the 
aggregate demand* which would result from utility-maximizing 
individual demands after an optimal wealth redistribution
(*: apply Roy’s identity to W*(p,w))

Normative representative consumer
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• If a normative representative consumer exists, we can, in 
principle, say that p0 ® p1 is socially beneficial or detrimental by 
looking at CV(p0, p1,w), EV(p0, p1,w), or DCS for that consumer

• But: 
w’s optimal distribution (w1*,…, wI*), which maximizes W(×), 
generally depends on p; 
hence, saying “p0 ® p1 is socially beneficial because DCS >0” 
is only warranted in the sense that there exists a redistribution 
scheme s.t. welfare is higher under p1
(“potential welfare” W*(p,w) is higher while actual welfare W(v1(p,w1),..., 
vI(p,wI)) may be lower for p=p1 than p=p0 if wealth is not redistributed)

Welfare vs. normative representative consumer
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• Conditions for existence of a positive representative consumer 
were already very demanding

• And if a positive representative consumer happens to exist, there 
is no guarantee that he is also a normative one for the 
considered welfare function W(∙);
it is even possible that his preferences have no normative 
content for any social welfare function

• However, if all consumers have indirect utility of the Gorman form 
with identical b(p), then the positive representative consumer 
also is a normative one 
(the Gorman form imposes sufficient structure for v(p,w) = Si ai(p) + b(p)∙w
to be a strictly increasing transformation of the planner’s value function for 
any social welfare function W(∙))

Existence of a normative representative consumer
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6. Choice under risk and uncertainty
• Lecture 2 considered preferences and choice w/o specific 

assumptions re. the considered alternatives X={x1, x2…};
they might involve risk, uncertainty, different points in time, 
space, etc.

• We now specifically consider risky alternatives, i.e., options 
associated with known objective probability distributions over 
deterministic outcomes (= lotteries)
(vs. uncertain / ambiguous alternatives =prospects)

• One may distinguish between simple lotteries L = (p1, ..., pN) over 
deterministic outcomes y1, ..., yN , and compound lotteries 
(‘lotteries over lotteries’)

• From a consequentialist perspective, a compound lottery can be 
equated with the simple lottery which it induces; 
hence, we focus on choice between simple lotteries
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6.1  Expected utility representations
• We know that if agent has complete, transitive and continuous 

preferences % over the space of all (simple) lotteries L, then 
preferences can be represented by a utility function U(L)

• Here, continuity may, e.g., be simplified to: 
"L,L‘,L‘‘ : { aÎ[0,1]: aLÅ(1-a )L‘ % L‘‘ }   and 

{ aÎ[0,1]: L‘‘ % aLÅ(1-a )L‘ }    are closed sets
• The function U(×) which maps each distribution L to a number 

may be highly complicated and unwieldy
(e.g., involve a “Choquet integral” w.r.t. a “capacity” derived from L)

• However, if % additionally satisfies the von Neumann-
Morgenstern independence axiom
"L,L‘,L‘‘: "aÎ(0,1):  L % L‘ Û aLÅ(1-a )L‘‘ % aL‘Å(1-a)L‘‘,

then U(×) can be chosen to have a simple functional form
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Von Neumann-Morgenstern expected utility
• In particular, U(×) can be chosen to have the v.N.-M.-expected 

utility form, that is:
there exists a (Bernoulli) utility function u(y) defined only for 
deterministic outcomes such that:

U(L) = S pi ∙u(yi) = EL[u(y)]         [= ∫u(y) dL(y)]
• %’s Bernoulli utility function u(×) is unique up to an order-

preserving affine transformation, i.e.,
u(×) can be chosen as Bernoulli utility function for %

Û au(×)+b for a>0 can also be chosen
• u(×) is a cardinal utility function over deterministic outcomes
• u(x) - u(y) > u(z) - u(w)>0 now has the interpretation that

x is a bigger improvement on y than z is on w:
- one could mix x with a greater probability for a bad outcome q and the 

agent still prefers this to y … 
- … than one could mix z with q and retain preference over w
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Remarks on independence axiom
• Requiring “independence” when “adding” lottery L‘‘ to L and to L‘

makes normative sense because there is no (obvious) 
complementarity or substitutability for mutually exclusive events

• An agent whose % violates independence may be “Dutch-
booked“, i.e., some money can be extracted from her at no risk:
- Suppose L1 Â L2, but aLÅ(1-a)L1 Á aLÅ(1-a)L2
- Let her own aLÅ(1-a)L1, while you own aLÅ(1-a)L2
- Trade lotteries with her, collect a fee, and wait
- If L isn’t realized, then trade L1 for L2 and collect another fee
Þ Your position is exactly as without the trades (L with prob. a, L2 with 

prob. 1-a), but you additionally collect a fee one or two times 
• By independence, L ∼ L’ Þ (i) L ∼ aLÅ(1-a)L’ and 

(ii) aLÅ(1-a)L’’ ∼ aL’Å(1-a)L’’
for all aÎ[0,1] and any L’’, i.e., %’s indifference curves are straight 
parallel lines in the probability simplex
(unless agent is indifferent between the deterministic outcomes y1, y2, y3)
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Allais paradox
• Though normatively appealing, real people frequently violate 

the independence axiom
• This is illustrated, e.g., by the Allais paradox:

For (y1,y2,y3) = (2500€,500€,0€) many people reveal
(1) L1 = (0, 1, 0) Â L2 = (0.1, 0.89, 0.01)
(2) L3 = (0, 0.11, 0.89) Á L4 = (0.1, 0, 0.9)

• If this satisfied the v.N.-M. axioms, we could choose u(0) = 0, 
and then infer 
- from (1): [1 - 0.89]∙u(500€) > 0.1∙u(2500€)
- from (2): 0.11∙u(500€) < 0.1∙u(2500€) 
(L1 and L2 lie parallel to L3 and L4 in the probability simplex; 
so 1st choice fixes 2nd one under v.N-M. axioms: all indifference lines 
either have greater, smaller, or same slope as these two lines)
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6.2 Money lotteries and risk attitudes
• Consider lotteries over interval [a,¥) of final wealth levels as 

described by random variable X with cumulative distribution 
function F(x) = Pr(X ≤ x), and v.N.-M. utility function U(×) with 
increasing Bernoulli utility u(×) such that EF[u(X)] is finite

• The agent is said to be 
- risk neutral Û she is indifferent between lottery F and receiving

EF[X] for sure, i.e., "F: EF[u(X)] = u(EF[X])
- (strictly) risk averse Û she (strictly) prefers EF[X] for sure to F
- (strictly) risk loving Û she (strictly) prefers F to EF[X] for sure

• By Jensen‘s inequality, u is concave iff
∫u(x)dF(x) ≤ u(∫x dF(x))

• So (strict) risk aversion is equivalent to (strict) concavity of u
• It is also equivalent to the certainty equivalent, i.e., sure payment 

c(F,u) that renders agent indifferent to F, being (strictly) smaller 
than EF[X]
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Quantifying and comparing risk aversion
• Risk attitudes of two individuals, or the same individual at 

different levels of wealth x can be compared by the Arrow-Pratt 
coefficient of absolute risk aversion

rA(x; u) = - u‘‘(x)/u‘(x)
• u2(×) is more risk averse than u1(×) 

Û rA(x; u2) ≥ rA(x; u1) for all x
Û c(F; u2) ≤ c(F; u1) for any lottery F
Û u2 is “more concave“ than u1, i.e., there exists an 

increasing concave transformation k(∙) s.t. u2(x) = k(u1(x))
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Common assumptions about risk aversion
• It is often plausible to assume that u(×) has decreasing absolute 

risk aversion in wealth (DARA), i.e., that rA(x;u) decreases in x
• Moreover, one often assumes that u(×) has nonincreasing

relative risk aversion, i.e., the coefficient of relative risk aversion
rR(x;u) = - x ∙ u‘‘(x)/u‘(x)

is constant or decreasing (CRRA or DRRA)
• This captures the regularity that, as an individual becomes 

richer, a greater absolute amount is invested in risky assets 
(DARA), and this amount corresponds to a weakly greater 
share of total wealth (CRRA or DRRA)

• Remarks:
– rA(x;u) º g ¹ 0 (CARA) Û u(x)= a1 - a2×e-gx (with a2 >0)
– rR(x;u) º d (CRRA )      Û d=1: u(x)= a1 + a2×ln(x)

d¹1: u(x)= a1 + a2×x1-d
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(Partial) orderings of random variables
• Any two agents, who like higher x better, agree that lottery F1 is 

better than lottery F2  if  F1(x) ≤ F2(x) for all x, 
i.e., F1  places less probability on small realizations of X than F2

Û F1 first-order stochastically dominates F2

• Any two risk averters agree that lottery F1 is better than lottery F2  

if F1 and F2 have the same mean (≙ expected value) and F2 can 
be generated from F1 by shifting probability towards the 
extremes, 
Û F2 is a mean-preserving spread of F1

• F2 being a mean-preserving spread of F1 is a special case of:
F1 second-order stochastically dominates F2



Advanced Microeconomics I 

Decision experiment #2

Advanced Microeconomics I 

6.3 Subjective probability theory



100

6.3 Subjective probability theory
• If agents choose between uncertain prospects for which no 

objective probabilities are given, their behavior may still be 
represented in “as-if”-fashion as expected utility maximization for 
subjective probabilities

• The key requirements for this to be possible is Savage‘s sure 
thing principle (STP): the ranking of two prospects P1 and P2
(≙ mappings from states of the world to, e.g, wealth) depends only 
on provisions for states in which P1 and P2 actually differ

• In particular, 

if and only if

s1 s2 s3
x y z

P1: s1 s2 s3
x‘ y‘ z

P2:%

s1 s2 s3
x y z‘

P3: % s1 s2 s3
x‘ y‘ z‘

P4:
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Ellsberg paradox
• Intuitively reasonable choices under uncertainty can violate 

subjective expected utility maximization 
(e.g., because the latter doesn‘t allow for ambiguity aversion)

• Example:
Suppose a ball is drawn from an urn with 30 red balls, and 60 
white or blue balls in unknown proportion
- Many people strictly prefer P1 in 

P1: 100€ for red, 0€ otherwise 
vs. P2: 100€ for blue, 0€ otherwise

• And they strictly prefer P4 in 
P3: 100€ for red or white, 0€ otherwise,

vs. P4: 100€ for blue or white, 0€ otherwise
• The first choice indicates pblue < 1/3 = pred;

the second one indicates 2/3 > 1 - pblue Û pblue > 1/3
[Homework: find violation of STP if P1 Â P2 and P3 Á P4]
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7. Static games of complete information

• GT º multiperson decision theory
• Each agent’s utility possibly depends on actions of other agents; 

optimal decisions thus depend on individual beliefs about other 
agents’ choices (which depend on their beliefs)

• GT works with models of real-life situations, called “games”; 
to these, it applies “solution concepts”

• GT helps to understand how decision makers interact if they are 
rational and reason strategically, 
i.e., if they pursue a well-defined objective and make optimal use 
of their knowledge about other decision makers

• Illustration by “70%-Beauty Contest game”:
– Submit a number si Î [0; 100]
– We’ll compute the average  = 1/n×S si

– The persons whose number is closest to 0.7 × share the prizes
s
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Some distinctions

• There are two main branches of GT
– non-cooperative GT:

Players may communicate but cannot commit to any agreed action;
order of moves and players’ information is explicitly specified

– cooperative GT:
Players can make binding agreements;
“details” of the game are unspecified

• Players’ information in a game can be
– complete:

all know the game’s structure and everybody’s preferences 
(though maybe not all of others’ actions prior to a move)

– incomplete:
at least one player lacks information, e.g., about others’ preferences
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Some distinctions

• A non-cooperative game can be
– in normal form or static or simultaneous-move:

players choose a strategy (= a complete plan of action covering all 
contingencies) once and “simultaneously”

– in extensive form or dynamic:
players act sequentially based on perfect or imperfect information about 
what has happened so far

• An extensive form game can be translated into normal form, 
and vice versa;
dynamic information is often useful, but sometimes also distracting
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A book (just in case you get hooked …)

• PDF version can be downloaded for free by UBT students:
link.springer.com/content/pdf/10.1007%2F978-3-642-31963-1.pdf
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7.1 Basic notation and preliminaries

• Notation:
– N = {1,2,…, n}: set of agents or players
– Si: set of (pure) strategies available to player i
– si Î Si: a strategy of player i
– S º S1´ …´ Sn: strategy space of the game
– s=(s1,…,sn) Î S: a strategy profile
– s-i =(s1,…,si-1, si+1,…, sn): profile of all except player i‘s strategies
– S-i º S1´ … Si-1´ Si+1´ … ´ Sn

– ui: S® R: player i‘s v.N.-M. utility or payoff function
– u: S® Rn with u(s) º (u1(s), …, un(s))
– D(Si): set of all probability distributions over Si (= i‘s mixed

strategies)
– siÎD(Si): a mixed strategy of i
– s, s-i : analogous
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Normal form

• The normal or strategic form of a game is a triplet á N, S, u ñ
specifying the players, their strategies and payoff functions

• The mixed extension of á N, S, u ñ, denoted by á N, S, u ñ with 
S=D(S1)´ …´ D(Sn), explicitly allows the use of mixed strategies, 
i.e., players can independently randomize over their pure 
strategies

• Remarks:
– Pure strategies are just particular (degenerate) mixed strategies
– Often the analysis concerns á N, S, u ñ, but only á N, S, u ñ is mentioned
– Utility on S naturally extends to S by the assumption of v.N.-M. utilities
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Complete information and common knowledge

• Unless otherwise stated, we will consider games of complete 
information, i.e., we assume that á N, S, u ñ and the rationality 
underlying u are common knowledge

• Some fact x is called common knowledge if
– everybody knows x,
– everybody knows that everybody knows x,
– everybody knows that everybody knows that everybody knows x,
– etc. ad infinitum

• We presume that with any facts x, y, and z players know all 
the logical implications of x, y, and z, too
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7.2 Dominant strategies and rationalizability

• Question: Which predictions can be made just based on 
(common knowledge of) rationality?

• Strategy si*Î Si is 
– strictly dominating strategy si’ÎSi (or si’ is strictly dominated by si*) 

Û " s-iÎS-i : ui(si*,s-i) > ui(si’,s-i),
i.e., si* is always strictly better than si’ no matter what (player i
believes that) the other players do

– weakly dominating si’ (or si’ is weakly dominated by si*) 
Û " s-iÎS-i : ui(si*,s-i) ³ ui(si’,s-i)

Ù $ s-i ÎS-i : ui(si*,s-i) > ui(si’,s-i)
i.e., si* is never worse than si’ and sometimes strictly better

• si* is strictly dominant if it strictly dominates all other si’ÎSi
• If a strictly dominant strategy exists, rationality dictates its use
• For n=2, a profile s is consistent with common knowledge of

rationality, i.e., is rationalizable iff all involved si survive iterated
elimination of strictly dominated strategies
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7.3 Nash equilibrium

• When many strategy profiles are rationalizable, more specific 
predictions can be obtained if players are assumed to have 
beliefs consistent with each other, i.e., i’s beliefs about s-i are 
correct for every i2N

• NB: this is not implied by common knowledge of rationality and 
the game, but requires extra motivation!

• Strategy profile s*=(s1*, …, sn*)ÎS is a Nash equilibrium (NE) 
Û "iÎN : "siÎSi : ui(si*, s-i*) ¸ ui(si, s-i*),

i.e., everybody plays a best response1 to (his correct beliefs about 
the) strategy choices s-i* of everybody else.
[1 There may be others!] 
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Remarks

• Mixed strategy NE: same for profiles s*2 D(S1)£ … £ D(Sn)
• A strategy profile s* is a strict Nash equilibrium iff it is a NE and 

above inequality is strict, i.e., everyone has a unique best 
response to s-i* 
[NB: a game may have several strict NE]

• Why game theorists care about NE so much:
– Though NE is not implied by rationality, it is “focal” amongst all rationalizable

profiles: only NE involve consistent beliefs
– If there is any “unique predicted outcome” or a stable social convention for 

playing a particular game w/o external coordination, then it must be a NE
– If players can talk prior to the game and agree on some profile s without

exogenous commitment or coordination, only NE are self-enforcing
– A NE may be viewed as a “steady state” of play where an unspecified dynamic 

process has brought about correct expectations;
many learning dynamics or evolutionary processes converge to a NE
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Mixed-strategy NE

Proposition
Consider the mixed extension of finite game áN,S,uñ. 

s* is a NE of áN,S,uñ
Û For all i ÎN, every pure strategy si played with

positive probability under si* (º si is in the
support of si*) is a best response to s-i*

Proof:
It is always true that 

“Þ” Assume some si in supp(si*) is no best response to s-i*. 
Then ui(s*) can be increased by shifting probability from si to
some si’ that is a best response. ~ to “si* is a best response”

“Ü” Assume s* is no NE, i.e., for some i, si* is no best response to s-i*. 
Some si’ in supp(si’) with si’ being a best response to s-i* gives
higher payoff against s-i* than some si in supp(si*). ~

( )
i i

i i i i i i
s S

u ( ) s u (s , )-
Î

= s ×åσ σ
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Mixed-strategy NE

• That truly mixed NE involve indifference reduces their appeal
• Defense of mixed NE:

– In some games, players try to be unpredictable and mixed NE has 
empirical support 
(penalty kicks, tennis serves, R-S-P game, …)

– In zero-sum games, si* maximizes i ‘s guaranteed expected payoff, 
i.e., is a “safe” strategy with minimal knowledge requirements

– A mixed NE may describe a large population where individuals are 
randomly matched and play pure strategies in the “right” population 
proportions

– A mixed NE can be viewed as approximating a pure (Bayesian) NE 
of a game in which part of players’ payoffs is private knowledge 
(purification of mixed NE proposed by Harsanyi)
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Existence of NE

• Games with infinite pure strategy spaces may fail to have any NE

• Nash (1950) proved that every finite game has “an equilibrium 

point” (=mixed NE) 

• The proof involves showing that in such games

– all players have at least one best response to any s-i ; 
if i has multiple BRs, they form a convex set

– BRi(×) has a closed graph (i.e., is upper semicontinuous) 
• It follows that BR(×)º BR1(×)´ … ´ BRn(×) is a u.s.c., nonempty and 

convex-valued correspondence from the non-empty, convex, and 

compact set S º D(S1)´ … ´ D(Sn) to itself

ÞKakutani‘s fixed point theorem guarantees existence of a fixed 

point s Î BR(s), which is a NE

• Nash’s result can be extended to games with general convex 

strategy spaces, to symmetric NE, or pure-strategy NE
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7.4 Equilibrium selection and refinement
• The key “problem” is usually not existence but multiplicity of NE
• Consider

1  \ 2 F H
F 7,7 0,0
H 0,0 9,9

1  \ 2 F H
F 7,7 8,0
H 0,8 9,9

a) b)

® What would you play?

1  \ 2 f h
F 3,1 0,0
H 2,2 2,2

c)

d) S1= S2=[0,100],  ui(si, sj)=si if si + sj =100, and 0 otherwise

121

Equilibrium refinement
• A large literature has tried to build plausibility or robustness 

considerations into the equilibrium concept itself
• Prominent refinements of NE include:

– (trembling-hand) perfect equilibrium
• A NE s is trembling-hand perfect iff each si is still optimal against some

completely mixed strategy profiles “nearby”, i.e., each player i wants to 
stick to si even if he expects others to “tremble” and play each of their pure 
strategies with at least (some particular) small positive probability

• This rules out the use of weakly dominated strategies;
strict NE and NE involving only completely mixed strategies are 
automatically perfect

– strictly perfect equilibrium
• As above, but robustness against all, not just some “trembles” is required

– essential equilibrium
• Requires robustness against payoff perturbations

• NB: there are also plausible generalizations of NE, esp. the 
notion of a correlated equilibrium
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8. Dynamic games of complete information

• A dynamic or sequential-move or extensive (form) game adds to 
the information provided in static games an explicit description of
– the timing of players‘ actions
– the information about play so far on which actions can be conditioned

• We keep the assumption of complete information, i.e., the game 
(incl. all preferences) is common knowledge
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8.1 Game tree

• Central to the modeling of dynamic games is the concept of a 
game tree, e.g.

• A tree is a particular type of directed graph, with nodes (or 
vertices) and edges, each connecting two nodes

Entrant

Incumbent

stay out

enter fight

accommodate

o1

o2

o3
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Game tree

• Formally, a tree is defined by
– a set of nodes N
– a transitive and asymmetric (i.e., a ! b Þ ¬(b ! a)) precedence 

relation Á satisfying the arborescence properties:
• there is a unique initial node n0 Î N without predecessor 
• if n and n’ precede n’’, then either n Á n’ or n’ Á n

(in particular, every node except n0 has a unique direct predecessor)

• For example,

are no trees

or1. 2.
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Game tree

• Nodes without successors are called terminal nodes;
all non-terminal nodes are called decision nodes

• Given N and Á with decision nodes D, a function 
i: D ®N È {Nature} 

for every decision node specifies the player who has to move
• The additional player “Nature” is a trick to model chance moves 

(if needed)
• For n Î D, A(n) denotes the set of actions available to player i(n)
• Each a Î A(n) leads to a different direct successor n’ of n as 

defined by a function 
a(n): A(n) ® Succ(n)

[i.e., each non-initial node n’  is reached from a unique n by a unique 
action a Î A(n)]
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8.2 Information sets
• The player i(n) who has to move at n may not know that the 

game is currently exactly at n, e.g., because moves of other 
players are imperfectly observed

• This is reflected by a partition P of D into information sets {n0}, 
P2, …, Pk Î P that capture what players know when moving
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Information sets
• Example:

• Here:
– 1st-moving player 1 (always) knows the entire “empty history”
– Player 2 knows 1’s choice when making his first choice
– Player 1 does not know whether 2 played up or down;

neither does 2 know if 1 played u or d when making his second choice

1

2

2
1

Up

Down

down

up

2

2
u

d

u

d

129

Information partition
• The information partition P of D into information sets must satisfy 

the following conditions: 
– the same player i(n) and action set A(n) are assigned to all nÎPj

(so we may simply write i(Pj) and A(Pj))
– if nÎPj, then no successor of n is also contained in Pj

• Player i(Pj) called to select an action a Î A(Pj) at a node in Pj

knows that moves leading to Pi ¹ Pj were not played, 
but doesn’t know which move(s) led into Pj if that’s non-singleton
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8.3 Extensive game

• Formally, the collection áN, N ,Á , i , {A(n)}nÎN, {a(n)}nÎN, P ñ
defines an extensive game form.
An extensive game form together with
– v.N.-M. utilities ui over all (lotteries over) terminal nodes for all iÎN
– a probability distribution r(n) on A(n) for each n at which Nature “moves” 

defines an extensive (form) game G.

• Remarks:
– The definition of a “game form” may include r(n) too 

– Above 9-tuple (or 10-tuple in MWG) is rarely written down: usually, G is 

“defined” by a diagram or verbal description

– We assume that players have perfect recall, i.e., do not forget what they 

learned at some stage (® restricts possible partitions P )

– If all information sets are singletons then we speak of a game of perfect 
information, otherwise of a game of imperfect information
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Strategies in extensive games

• In extensive games, actions (at some information set) need to be 
clearly distinguished from strategies;
strategies are complete plans that prescribe an action for every 
contingency calling a player to move

• Denoting the set of information sets P such that i(P)=i by Pi, a 
(pure) strategy of player i in an extensive game is a function 

si: Pi ®ÈPÎPi A(P) 
which maps each of i’s information sets PÎPi to a feasible action 
si(P)ÎA(P)

• Histories of play often substitute for information sets in the 
description of strategies

• A player may randomize either over his pure strategies 
(® mixed strategy) or independently over feasible actions at 
each information set (® behavior strategy)
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8.4 Backward induction

• Extensive games of perfect information can be solved by 
backward induction if there is a “last period”, i.e., if every 
possible history is finite:
– One determines optimal choices for the respective last-moving players 

in all next-to-terminal nodes
– One replaces these decision nodes by the selected terminal nodes (or 

marks the corresponding edges appropriately), and then repeats the 
exercise until the initial node is reached

• Every finite game of perfect information has a solution to 
backward induction;
for “generic” games – i.e., if no two payoffs are the same – the 
solution is unique
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8.5 Subgame perfect equilibrium

• The idea of players behaving rationally (and others anticipating 
this) throughout the entire game (= sequential rationality) can 
also be applied to games of imperfect information or without 
“last period” …

• A subgame Gn of an extensive game G is an extensive game 
starting in a singleton information set {n} (of G), containing 
exactly all successors of n as its other nodes, not cutting 
through any of G‘s information sets and inheriting payoffs, 
information sets, etc. from G

• A strategy profile s* of G is a subgame perfect equilibrium
(SPE) iff s* induces a NE in every subgame of G

• In games with finitely many stages, SPE can be found by (a 
generalization of) backward induction
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One-deviation principle

• Consider a game of perfect information or one where at each 
stage players move simultaneously and afterwards observe all 
actions:
– Obviously, s* is a SPE only if no player i has a strategy si’ that differs 

from si* in just one information set PÎPi and does strictly better than 
si* conditional on P being reached

– The reverse is also true and known as the 

• One-deviation principle:
s* is a SPE if no player i has a strategy si’ that differs from si* in 
just one information set PÎPi and does strictly better than si* 
conditional on P being reached 

Advanced Microeconomics I 

8.6 Repeated games



138

8.6 Finitely repeated games
• Suppose that extensive game GT consists of T<¥ iterations of 

exactly the same normal form game G=áN,S,uñ and players try 
to maximize their undiscounted sum of payoffs

• Knowing the NE of G, what can we say about SPE of GT?

• If stage game G has a unique NE s* then T-fold play of s*
independently of the current history is GT ’s unique SPE

• If s* is any NE of stage game G, then T-fold play of s*
independently of the current history is a SPE of GT

• In case of multiple stage game NE, there may also exist other 
SPE which are history-dependent and involve play of a stage 
game NE only in an “end-game” phase
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Infinitely repeated games
• Let G¥ denote the infinite repetition of normal form game G=áN,S,uñ

in which players maximize their discounted sum of payoffs 
(with common discount factor dÎ(0,1))

• A payoff vector x is called strictly individually rational iff for every 
player i, xi strictly exceeds i’s minmax payoff Mi in G, 
i.e, the lowest payoff that players -i can impose as punishment on 
a player i who correctly anticipates s-i and best-responds to it

• Nash Folk Theorem / Perfect Folk Theorem:
Let x be feasible and strictly individually rational. Then, for d
sufficiently close to 1, there exists a NE / SPE of G¥ with average 
payoff  @ x.
(For games with n >2 players, an additional technical condition related to 
reward opportunities has to be satisfied for the Perfect Folk Theorem)
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9. Games of incomplete information
• So far, we assumed that players have complete information about 

the game;
in particular, every player knows
– every other player’s preferences (incl. the rationality associated to that)
– every other player’s strategy space
– every other player’s information partition

• What use are NE or SPE, which rest on correct beliefs about 
others’ behavior in the game, when there is incomplete information
on one of the above aspects, i.e., about which game is played?
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9.1 Harsanyi’s transformation
• John C. Harsanyi (1967/68) proposed a powerful framework for 

analysis of games of incomplete information

1. Introduce different types of each player:
– A particular type qi of player i is identified with a particular preference, 

strategy space and information partition
– Each player i knows own type qi but possibly not that of other players
2. Introduce Nature as an additional player:
– Nature moves first and assigns each player i his type qi ÎQi

– Nature’s move is a random draw from an exogenous and commonly 
known joint probability distribution r on Q º Q1´… ´ Qn

– Each player i rationally updates the common prior r after learning qi

• Thus, a game of incomplete information is transformed into an 
(extensive) game with complete (but imperfect) information
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Example
• Suppose a potential entrant and the market’s incumbent 

simultaneously decide about whether to enter and whether to 
boost capacity, respectively

• Cost of a capacity increase is either high or low, and private 
information of the incumbent

• Profits are

in case of high costs 
and

in case of low costs 

Incumbent \ Entrant enter stay out

invest 0, -1 2, 0
don‘t invest 2, 1 3, 0

Incumbent \ Entrant enter stay out

invest 1.5, -1 3.5, 0
don‘t invest 2, 1 3, 0
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Example
• Nature ‘selects’ high costs with probability r, i.e., we obtain:

Nature

Incumbent

[r]

[1-r]

invest

don’t invest

enter

stay out

(1.5,-1)

(3,0)

enter

stay out

(3.5,0)

(2,1)

Incumbent invest

don’t invest

enter

stay out

(0,-1)

(3,0)

enter

stay out
Entrant

(2,0)

(2,1)
high

low
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9.2 Bayesian games
• A Bayesian (normal form) game is a collection áN,Q,r,A,uñ

where 
– type space Q º Q1´… ´ Qn specifies all possible types of players iÎN
– actual types are drawn from joint probability distribution r on Q
– players’ (pure) strategy sets Si are implicitly defined as the set of all 

functions si: Qi ®Ai which map every possible type of player i, qi, to an 
action si(qi )Î Ai
(elements of Ai are strategies in the original game of incomplete information)

– ui is defined on A ´ Qi

• We assume that áN,Q,r,A,uñ is common knowledge
Þ Rational players update the prior r using Bayes’ rule:

( ) ( )
( )

Pr A B
Pr A | B

Pr B
Ç

=
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Best responses
• Comparing two actions ai, ai’ÎAi, player i with type qi will (in 

equilibrium: correctly) anticipate some strategy profile s-i but – in 
the spirit of players having incomplete information – must treat 
other players’ types and hence actions as random variables

• So player i‘s type qi compares

to Eui (ai’,s-i,qi)
• If players use mixed strategies, then ui (ai’,s-i (q-i),qi) is simply 

replaced by expected payoff ui (ai’,s-i (q-i),qi)
• Strategy si* of player i (in a Bayesian game) is a best response

to s-i iff it specifies an optimal action si*(qi)ÎAi for each type qi
that player i might happen to be, 
i.e., "qi ÎQi : "ai’ÎAi: Eui (si*(qi),s-i,qi) ≥ Eui (ai’,s-i,qi)

( ) ( ) ( )( )
i i

i i i i i i i i i i iu a ,s , | u a ,s ,
- -

- - - -
q ÎQ

q º r q q × q qåE
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9.3 Bayesian Nash equilibrium
• A Bayesian Nash equilibrium (BNE) of the game áN,Q,r,A,uñ is a 

strategy profile s*=(s1*,…,sn*) such that for each player iÎN the 
strategy si* is a best response to s-i*, i.e., 

"qi ÎQi: ai =si*(qi) ÎAi maximizes Eui (ai,s-i*,qi)
(with expectation E based on r(q-i | qi)) 

• A mixed-strategy BNE s* is defined analogously
• As in games of complete information, mixed strategy si* is a best 

response to s-i iff each action ai played with a probability 
si(qi)(ai) > 0 maximizes Eui (ai,s-i,qi)

• Proofs of existence of BNE are analogous to those for NE 
(i‘s best response correspondence is BRi ºBRi(q1) ´ BRi(q2) ´… ´ BRi (qki))
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Example

• Again consider

with a specific probability rÎ[0,1] for firm 1 having high costs

• Given r=0.5, 
– s*=((1h ! don’t invest, 1l! don’t invest ); enter) and 
– every s**= ((1h ! don’t invest,1l ! invest); (q,1-q)) with qÎ[0,1/2] 

are BNE 
(q refers to probability of enter)

1h / 1l \\ 2 enter stay out
invest 0/1.5 , -1 2/3.5 , 0
don‘t invest 2/2 , 1 3/3 , 0
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9.4 Dynamic games of incomplete information

• Two complications arise when we apply the Harsanyi
transformation to an extensive game of incomplete information:
1. If qi is private information, -i’s information sets are never singletons

Þ there are no proper subgames started by -i’s moves



152

Example

Nature

Incumbent

[r]

[1-r]

invest

don’t invest

enter

stay out

(1.5,-1)

(3,0)

enter

stay out

(3.5,0)

(2,1)

Incumbent invest

don’t invest

enter

stay out

(0,-1)

(3,0)

enter

stay out
Entrant

(2,0)

(2,1)
high

low
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9.4 Dynamic games of incomplete information

• Two complications arise when we apply the Harsanyi
transformation to an extensive game of incomplete information:
1. If qi is private information, -i’s information sets are never singletons

Þ there are no proper subgames started by -i’s moves
Þ subgame perfection does not restrict -i’s moves off the NE path
Þ sequentially irrational behavior can survive (e.g., empty threats)

2. While -i’s beliefs about qi should be updated after any of i’s moves ai
t, 

Bayes’ rule only defines the conditional probability r(qi | ai
t, q-i) after 

moves ai
t which have positive probability under strategy profile s*
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Example
• Consider the following game of complete but imperfect information 

(not even involving a move by Nature):

• (ENTER, accommodate) and (stay out, fight) are NE

• For the incumbent, fight is strictly dominated conditional on ;
still, (stay out, fight) is SPE because the game is its only subgame

ÞWe need a better formalization of sequential rationality than SPE

ENTER

enter

fight

accommodate

(0,3) (-1,2)

fight

accommodate

(1,1)

(-1,1)

(-1,0)

stay out

Incumbent
Entrant
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Strategies and beliefs

• More refined equilibrium concepts try to formalize optimal 
behavior in every “continuation game”, i.e., in whatever follows 
a possible history, rather than only proper subgames

• For player i to be able to identify an optimal action in an arbitrary 
information set Pj at which she has the move she must 
– anticipate a particular (mixed) strategy s-i played by other players
– have conditional beliefs µi(×|Pj) about which decision node n2Pj she is in 

(= a probability distribution µi on Pj) given that Pj was reached
• The beliefs held by any player i and the equilibrium strategy 

profile s* depend on each other:
– player i’s strategy si must maximize expected utility given µi
– beliefs µi must be consistent with prior r and anticipated strategies
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9.5 Perfect Bayesian equilibrium

• A (weak) Perfect Bayesian (Nash) equilibrium (PBE) of the game 
G=áN, Q, N , Á , i , {A(n)}nÎN, {a(n)}nÎN, P , {r(n)}, uñ is a 
combination (s*,µ*) of a strategy profile s*=(s1*,…,sn*) and a 
system of beliefs µ*=(µ1*,…, µn*) such that for each player i ÎN
1. strategy si* is “sequentially rational” in the sense that

it prescribes a best response to s-i* in any information set Pj 2 Pi given 
the system of beliefs µi*, i.e., 

"qi Î Qi: "Pj 2 Pi: si*(qi)ÎD(A(Pj)) maximizes Eui (× ,s-i*,qi| Pj)
(expectation E based on µi*, and si*(qi)(ai) > 0 only if ai max’es Eui (×))

2. system of beliefs µi* is consistent with s*,
i.e., it is derived from s* and Bayes’ rule (where it can be applied; that 
is: for information sets which have positive probability under s*)

• A combination of a strategy profile and a system of beliefs, (s,µ), 
is also called an assessment;
so a PBE is a sequentially rational and consistent assessment
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Example

• Consider

• When the incumbent’s information set is reached, sequential rationality 
requires accommodate for any belief (µ,1-µ) about the true history

• Anticipating s2*=accommodate, rationality requires s1*=ENTER
• Anticipating s1*, incumbent must believe that ENTER was played with 

probability 1
Þ (s*, µ*) with s*=(ENTER, accommodate) and µ*=1 is the unique PBE

ENTER

enter

fight

accommodate

(0,3) (-1,2)

fight

accommodate

(1,1)

(-1,1)

(-1,0)

stay out

Incumbent
Entrant

[µ]

[1-µ]
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Remarks

• If players use completely mixed strategies in a PBE, every 
information set is reached with positive probability and the 
system of beliefs is well-defined by Bayes’ rule everywhere 

• Otherwise, there is no restriction on conditional beliefs in 
information sets reached only after a deviation, i.e., the 
respective player i who has the move is free to interpret -i’s 
deviation as, for example, a fully informative indication of any 
particular type q-i, or as not revealing any information, or …
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Problematic example

• Consider

F

A

f

a

(3,1)

f

a

(1,-2)

(-2,-1)

(-3,-2)

2
1In

(0,2)

Out

1

[µ]

[1-µ]

• (((Æ!Out, In ! A), f), µ=1) is a PBE:
– Anticipating that 1 will stay out, Bayes’ rule doesn’t restrict 2’s beliefs  

for the zero-probability event that 2 has to make a move;
2 may think that 1 made another “mistake”, so that µ=1

– Based on µ=1, fight is indeed optimal for 2
– If 1 anticipates that 2 would fight, it is best to choose Out and to 

Accommodate after involuntary entry
• This implausible beliefs-based PBE isn’t even a SPE: 

(A,f) is no NE of the subgame following In
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9.6 Sequential equilibrium

• Kreps and Wilson (1982) proposed to avoid complete 

arbitrariness of beliefs in information sets reached with 

probability zero by requiring existence of some fully mixed 

strategy profiles – which reach every information set with positive 

probability – that “justify” the beliefs in (s*,µ*) 

• A sequential equilibrium (SE) of the (mixed extension of) game G
is an assessment (s*,µ*)

1. which constitutes a perfect Bayesian equilibrium

2. for which a sequence {sk }k=1,2,… of completely mixed strategy 

profiles with sk®s* exists such that the sequence of beliefs 

implied by sk and Bayes’ rule, {µk}k=1,2,…, converges to µ*
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Remarks

• Any SE is a PBE, but the reverse is not true;
SE requires two players to have consistent beliefs about a third 
player also after he deviated

• Every finite game has at least one SE
• In games in which only players’ types are private information but 

all actions are observed, PBE and SE coincide 
– if each player has at most two possible types or 
– if the game has only two periods (e.g., simple signaling games)

• NB: The sequence {sk }k=1,2,… need not consist of equilibria;
requiring that each (sk, µk) also forms a PBE leads to (trembling-
hand) perfect equilibria (PE) in extensive games, which are a 
“refinement” of SE introduced by Selten (1975)

• PE and SE are not the end of the PBE refinement story …
(e.g., the “Dominance Criterion” asks that, if possible, beliefs place zero 
probability on nodes reached by a strictly dominated action)
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10. Competitive markets
• In a perfectly competitive economy, every relevant good is traded, 

voluntarily and without transaction costs, by agents without market 
power nor information asymmetries

• A general competitive equilibrium is an allocation and a price 
vector s.t.
1. all firms‘ production and factor demand plans maximize their 

respective profits, 
2. all consumers’ consumption and factor supply plans maximize their 

respective utility, 
3. these plans match, i.e., all markets clear

• Properties of competitive equilibria have fundamental importance:
- Do market allocations satisfy “minimal quality standards” from a 

collective point of view?
- How do competitive market interaction and social objectives relate?
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Two requirements for market outcomes
• A first minimal requirement is that the allocations brought about by 

the market are Pareto efficient
• NB: Pareto efficiency doesn‘t involve any equitability concerns
• So, a second ambition is that specific normatively desired 

allocations somehow can be brought about by the market, too … 
• These issues are addressed for the economy as a whole by 

general equilibrium theory; 
we here restrict attention to a single market which constitutes a 
small part of the overall economy, i.e., partial equilibrium
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10.1 Partial equilibrium competitive analysis
• Generally, a consumer’s welfare depends on the optimal use of 

all her endowments (time, talents, goods, ...), and thus on all
prices in the economy

• We study a good k on which consumers spend only a small part 
of their budgets

→ Then it is reasonable to ignore wealth effects and “general 
equilibrium effects”, e.g., of a tax on this good on the price of 
other goods, labor supply, wages, etc.

169

Partial equilibrium competitive analysis
• Fixed prices for all other goods and no wealth effects can most 

easily be captured by assuming quasilinear utility
ui(xi,mi) = fi(xi) + mi

for sufficiently rich consumers i = 1, ..., I, where mi  captures i‘s 
expenditure on “other goods“ (treated as a composite 
numeraire good)

• The price of the numeraire is usually normalized to equal 1; 
the considered good k has price p
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Optimization by firms
• Assuming that consumers have no initial endowment of good k, 

all consumption has to be produced by profit-maximizing firms 
• Firm j‘s transformation of the numeraire into good k is captured 

by cost function cj(qj); 
with cj‘ > 0 and cj‘‘ ≥ 0, the necessary and sufficient condition for 
a solution to

max p*∙qj - cj(qj)
is

(I)   p* ≤ c‘j(qj*), with equality for positive output qj* > 0

qj ≥ 0
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Optimization by consumers
• Consumer  i chooses consumption (xi, mi) to solve 

max fi(xi) + mi

s.t. mi + p*∙xi  ≤ wmi + Sqij∙(p*∙qj - cj(qj))
(wmi is i‘s endowment of the numeraire good, qij is i‘s share of firm j’s profits)

• Monotonicity of preferences implies that the budget is exhausted, 
and 

max fi(xi) + [wmi + Sqij(p*∙ qj - cj(qj))] - p*∙xi 

calls for

(II) fi‘(xi*)  ≤ p*, with equality if xi* > 0 
(xi* is unique if we assume that f‘‘i(∙) < 0)

xi, mi ≥0

xi ≥0
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Competitive equilibrium
• Conditions (I) for all firms j = 1, ..., J

(II) for all consumers i = 1, ..., I, and 
(III) Sxi* = Sqj*

define a competitive equilibrium (CE)
• For quasilinear preferences, consumers’ shares of firm qij and 

initial numeraire endowments play no role in their optimal 
consumption and production decisions, (I) and (II), hence for p*

• Market supply and demand for the good are defined by (I) and 
(II) for arbitrary p

• The inverse of the supply function, q -1(∙), can be viewed as the 
industry marginal cost function C‘(∙) 
(with the next unit produced by the most efficient firm)

• The inverse P(x) = x -1(x) of the demand function corresponds to 
the marginal social benefit of the next unit of the good if the 
quantity x is distributed efficiently amongst consumers
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10.2 Fundamental Welfare Theorems 
• For any given consumption and production plans, x and q, and 

(sufficient) total endowments wm of the numeraire, any utility 
vector in set

{(u1, ..., uI) | Sui ≤  Sfi(xi) + wm - Scj(qj)}
could be realized by appropriate transfers of the numeraire in 
the considered quasilinear case
(as numeraire has same constant marginal utility for everyone)

• For given x and q, the RHS above is a constant, so the 
boundary of this utility possibility set is a hyperplane with 
normal vector (1,1, ..., 1);
variations of x and q imply parallel shifts of it
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Pareto optimal plans
• Plans x* and q* are Pareto-optimal iff they maximize the RHS, 

i.e., they solve 
max Sfi(xi) + wm - Scj(qj)

s.t. Sxi - Sqj = 0.
• Given our convexity assumptions (cj’’ ≥ 0, fi’’ ≤ 0), the 

maximization of the Lagrangean
L(x1, ..., xI, q1, ..., qJ, l) =Sfi(xi) - Scj(qj) - l∙(Sxi - Sqj)

yields the necessary and sufficient conditions (j=1, ..., J; i=1, ..., I):
(i) -cj’(qj*) + l ≤ 0 Û l ≤ cj’(qj*), with equality for qj* > 0
(ii) fi’(xi*) - l ≤ 0 Û fi’(xi*) ≤ l, with equality for xi* > 0 
(iii) Sxi* = S qj*

• These correspond exactly to the conditions which characterize a 
competitive equilibrium, with l replacing p*

x,q ≥ 0
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First Fundamental Welfare Theorem 
• Hence, if price p* and allocation (x1*, ..., xI*, q1*, ..., qJ*) 

constitute a CE, then this allocation is Pareto optimal
• This result is also known as the First Fundamental Theorem of 

Welfare Economics

• Good k‘s price p* in a CE exactly reflects the good’s marginal 
social value (in units of the numeraire), i.e., the “shadow price“ of 
the resource constraint:
Ø each firm, in its resp. profit maximization, equates own marginal 

production cost to the marginal social value of its output
Ø each consumer consumes up to the point where own marginal utility 

equals marginal cost of production (in units of the numeraire)
• The theorem vindicates Adam Smith‘s “invisible hand” for 

perfectly competitive markets, and holds more generally than 
considered here
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Remarks
• Market power, information imperfections or market 

incompleteness can yield very different conclusions …
• Nothing is said yet about actual existence of a CE, 

or how it might be reached (if at all) by a dynamic adaptation or 
tâtonnement process with decentralized information …

• In the quasilinear case, CE price p* and individually consumed 
and produced quantities of good k do not depend on the 
distribution of total endowment wm 
(NB: except for corner solutions, in which some agents are too poor to 
consume both good k and the numeraire)
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Second Fundamental Welfare Theorem 
• So, ignoring corner solutions, changing the initial distribution 

(wm1, ..., wmI) changes individual consumption of the numeraire
but not (x1*, ..., xI*, q1*, ..., qJ*): 
one moves within the Pareto efficient hyperplane

• For any Pareto optimal levels of utility (u1*, ..., uI*), there are 
transfers (T1, ..., TI) of the numeraire good with STi =0 such that a 
CE reached from the redistributed endowments 
(wm1 +T1, ..., wmI +TI) yields exactly the utilities (u1*, ..., uI*)

• This result is also known as the Second Fundamental Theorem 
of Welfare Economics

• Hence, pursuing a particular distributional goal does not conflict 
with having competitive markets: one can achieve the goal by 
appropriate endowment transfers and then “let the market work”

• This result generalizes, too, but not as much as the First Theorem 
(in particular, preferences and technology need to be convex)
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10.3 Welfare Analysis in Partial Equilibrium 
• What “yardstick” can we use for comparing different allocations 

(esp. Pareto-incomparable ones)?
• The value of Sfi(xi) - Scj(qj) in the maximization problem which 

characterizes Pareto efficient allocations is known as the 
(Marshallian) aggregate surplus

• It is an indicator of social welfare under any (increasing) social 
welfare function W(u1, ..., uI) in the quasilinear case:
- greater surplus implies a larger utility possibility set
- the planner can select a utility vector with a greater (maximized) W-

value through appropriate endowment transfers
• Aggregate surplus can be derived very simply from market 

demand and supply functions;
it is thus a convenient tool and used in many applications
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Aggregate surplus and CE
• Starting from (possibly non-CE) total consumption and production 

x = Sxi = Sqj =q, increases by (Dx1, ..., DxI) and (Dq1, ..., DqJ) such 
that SDxi = SDqj º Dx > 0 would change surplus by

DS » Sfi’(xi)∙Dxi - Scj’(qj)∙Dqj

• For given x, the planner maximizes surplus by allocating consump-
tion and production s.t. fi’(xi) = P(x) and cj’(qj) = C‘(x) for all i, j

• Then DS » [P(x) - C‘(x)]∙Dx or  
dS/dx = P(x) - C‘(x)    for marginal changes

• So aggregate surplus under an optimal distribution of output x is
S(x) = S(0) + ∫[P(s) - C‘(s)]ds

• S(0) reflects possible fixed costs of production; 
S(x)-S(0) is the area between market demand and supply curves

• S(x) increases up to x* s.t. P(x*) = C‘(x*), i.e., the CE level
Þ surplus is maximal in the undistorted laissez-faire CE

(but: given one distortion, adding another may raise surplus …)

x

0
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10.4 Free-entry long run equilibria
• For strictly convex costs, “no” long-run free entry equilibrium exists 

as any firm would produce 0 (if p£MCmin) or ¥ (p>MCmin) 
• Otherwise, the demand curve intersects with an approximately 

horizontal LR industry supply curve 
(resulting either from CRS, with then an indeterminate industry structure, or 
from an appropriate number of  firms each producing at efficient scale)

• This LR equilibrium can differ from the SR equilibrium, in which 
the number of firms is fixed and a SR supply curve slopes 
upwards

p*=ACmin

D0(p)
x

SLR(p)

SSR(p)

D1(p)

shock
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11. Market power

• Price-taking behavior is implausible if there are only a few 
producers (or consumers)

• Several “workhorse” models of industrial organization capture 
the performance differences that market power can cause
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11.1 Monopoly

• A first benchmark is an uncontested monopolist who can
– produce quantity x of a good at cost C(x), and
– sell it at a constant unit price p to consumers, whose demand is 

described by demand curve D(p)
• The monopolist maximizes P(p) = p·D(p) - C(D(p))
• The necessary condition for an interior profit maximum is

[p -C‘(D(p))]·D‘(p) = -D(p)
Û [p -C‘(D(p))]/p = -D(p) /[D‘(p)·p] 

• In the monopolist’s profit maximum, the price-cost margin
[pm -C‘]/pm (a.k.a. Lerner index) equals the inverse of the 
(absolute) price elasticity |e| = - D‘(pm)·pm/D(pm) 

= 1/|e|
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Deadweight loss of monopoly

• Except for perfectly elastic demand (“|e|=∞”), pm > C‘(D(pm)) and 
quantity xm=D(pm) is smaller than x* in the CE

• A quantity x < x* results in an inefficient allocation and entails a 
deadweight welfare loss: surplus which could be generated by 
further trade is left unrealized
– Having sold D(pm) units at price pm, the monopolist would gain from 

selling additional units at any price p with C‘(D(p))<p<pm
– Consumers with willingness to pay v satisfying p<v<pm would gain from 

buying these additional units
• If the monopolist could perfectly discriminate between consumers, 

i.e., confront each consumer i with an individual price-payment 
bundle (xi, Ti), then
– it could capture all surplus
– would maximize profit by maximizing surplus
– there would be no deadweight loss
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Further remarks on monopolies
• In addition to the indicated allocative inefficiency xm < x*, 

a monopolistic market structure has further welfare costs:
– lack of product or capital market benchmarks intensifies internal 

agency problems, making inefficient organization of production likely 
(X-inefficiency )

– unproductive fights to secure monopoly rents 
(rent-seeking )

– smaller incentives to invest in R&D than firms without market power 
(dynamic inefficiency )

• Situation can be better if the monopoly market is contestable

• The profit maximization problem of a multi-product monopolist
differs from the standard case in that
– (dis-)economies of scope in production and
– positive or negative cross-price effects (complements/substitutes)

need to be taken into account
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11.2 Bertrand competition

• The Bertrand duopoly model considers 
– two firms that simultaneously announce their respective price pj for a 

homogenous good, which – in the baseline case – can be produced 
at identical constant marginal cost c without capacity constraints, 
and

– consumers that buy only at the cheaper firm if p1¹ p2, and otherwise 
split demand D(p ) with D’(p)<0 equally between firms 1 and 2

• If prices are discrete (e.g., multiples of a currency unit e), firm i’s 
best response correspondence Ri to pj is
– Ri (pj )={pj - e} for pj >c + e
– Ri (pj )={c + e} for pj =c + e
– Ri (pj )={pi :  pi ³ c} for pj =c
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NE in the discrete Bertrand game

• The discrete Bertrand game has two NE:
– (p1*, p2*)=(c, c)
– (p1**, p2**)=(c + e, c + e)

Ri (pj ), pi

Ri (pj )

c

c

Rj (pi ), pj

e

Nash equilibria

Rj (pi )

191

Bertrand paradox

• If p1 and p2 may be chosen from [0 ,¥), then (p1
b, p2

b)=(c, c) 
becomes the unique NE

• The “Bertrand paradox”:
Price competition between two symmetric firms with CRS results 
in the same market outcome as perfect competition, namely p*=c

• Asymmetric case:
– If firm j has a non-drastic cost advantage over its competitors, it supplies 

the entire market at price pj b = mink¹j ck (or e below)
– For a drastic advantage, it chooses pj b = pj m < mink¹j ck

• Even symmetric firms can avoid the paradox 
– if technology commits them not to undercut their rival for some p > C’

(e.g., for capacity constraints or strictly convex C(×))
– if they differentiate their products, i.e., make them imperfect substitutes
– if they collude
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11.3 Edgeworth competition

• As a limit case of strictly convex C(×), consider price 
competition with exogenous capacities q1 and q2<D(c), i.e., a 
single firm cannot serve the whole market at p*=c

• If firm i‘s capacity qi is already exhausted for pi = pj, it will not 
undercut firm j

• If capacities q1 and q2 are “small” (namely, ≤ xic in Cournot NE), 
equilibrium prices p1e=p2e=pe are defined by D(pe)=q1+ q2:
– Unilateral undercutting of pe is unprofitable because the firm‘s 

capacity is already exhausted
– A unilateral increase of pe (i.e., selling below capacity) is unprofitable 

if outputs are “small” and profit margins high already
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11.4 Cournot competition

• The Cournot duopoly model considers 
– two firms who simultaneously produce a respective output xj of a 

homogenous good at cost Cj(xj), and
– market clearing at price p=P(x1+x2), i.e., such that D(p )=x1+x2

• The Cournot game can be interpreted as the reduced form of a 
two-stage extensive game in which
– first, firms invest in capacities xj , incurring costs Cj (xj ) for this (j=1,2)
– second, they engage in Edgeworth competition with fixed capacities 

qj = xj and zero costs of production
• We assume that no firm as a drastic cost advantage: costs are 

sufficiently similar that both firms want to produce in equilibrium
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Reaction function of firm i

• Firm i maximizes

Pi (xi, xj )=P(xi+xj )×xi -Ci (xi )

• Best response xi* =Ri (xj ) to the anticipated competitor output xj
is defined by 

P(xi+xj )+P‘(xi+xj )×xi = C‘i (xi )

• For xj=0, i should behave like a monopolist, i.e., Ri (0)=xi
m

• If the competitor already produces the CE quantity xj=x*, it is 

optimal not to produce, i.e., Ri (x*)=0

• Under standard assumptions – with P‘‘(x)≤0 and Ci‘‘(xi)≥0 – the 

reaction function Ri (xj ) is strictly decreasing on (0, x*)
• This means firms’ quantity decisions are strategic substitutes : 

firm i reacts to a larger output xj with a reduction of own output xi
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xi +xj =x*

xm

Rj (xi )

Nash equilibrium in the Cournot game

Ri (xj ), xi

Ri (xj )

x*

xm

Rj (xi ), xj

xi +xj =xm

Symmetric  case:

xj
c

Cournot NE

xi
c
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n-firm Cournot game

• With xS = Sxi, the NE xc =(x1c ,…, xn
c) of Cournot competition 

between n firms is characterized by:

P(xS )+P‘(xS)×xi = C‘i (xi ) for iÎ{1,…,n }

or, expressed in market shares si = xi /xS and with pc=P(xSc ),

[pc - C‘i (xi
c )]/pc = si / |e(pc)| 

• In the Cournot NE, the Lerner index (» profitability / market power) 

of firm i is proportional to its market share si;

unequal market shares derive from technology differences

• For symmetric firms, si =1/n with mark-up ratio 1/[n×|e(pc)|]

Þ pc converges to p*=c as n®¥
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11.5 Hotelling competition

• The Hotelling duopoly model considers 
– a continuum of consumers who want to buy at most one unit of a 

differentiated good regarding which they have uniformly distributed 
ideal points in a one-dimensional product space X=[0,1], and

– firms 1 and 2 who are – in the baseline case – located at the 
extremes of X, and simultaneously announce prices p1 and p2 for the 
good produced at constant marginal cost c

• Let consumers suffer from quadratic disutility of distance, tx2 or 
t(1-x)2 for t>0, and have sufficiently high valuation for the good 

Þ They will always buy from the firm for which price plus 
“transportation cost” is minimal
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Hotelling model with fixed locations

• The consumer at location x buys from 1 if p1+tx2≤ p2+t(1-x)2, 
otherwise from 2

Þ Firm 1 faces demand D1(p1, p2)= (p2 - p1+t)/2t, 
firm 2 faces D2(p1, p2)=1-D1(p1, p2)

• Maximization of Pi (p1, p2)= (pi -c)·Di (p1, p2) yields reaction 
functions Ri (pj )=1/2·(pj +c+t )
(NB: firms’ prices are strategic complements)

ÞNash equilibrium: p1*= p2* = c+t 
• Profits Pi (p1*, p2*)=t /2 are positive;

they increase in differentiation parameter t > 0
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Prototypes of product differentiation

• Horizontally differentiated products:
– Different consumers prefer different products given identical prices;

they have individual notions of the “ideal” location of the good in an 
abstract or physical product space (® Hotelling model) 

• Vertically differentiated products:
– All consumers have the same preferences over products as such, i.e., 

they would all buy the same one(s) given identical prices p1= …= pn
– Different preference intensities (marginal rates of substitution between 

wealth and the differentiating characteristic) explain different purchase 
behavior for non-identical prices

• Representative consumer with love of variety:
– A representative consumer obtains utility from the numeraire and an 

“index” of his consumption of goods 1, …, n to which all goods 
contribute symmetrically, and where usually the first unit of any good 
has infinite marginal utility
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11.6 Collusive behavior

• Collusion refers to anti-competitive coordination of firms’ prices, 
quantities, etc. in markets where cartel agreements cannot be 
enforced in court

• Firms’ always have an interest in full coordination: 
they could duplicate the non-cooperative outcome; 
not doing so reveals that they strictly increase profits …

• Such coordination is, however, not self-enforcing if firms interact 
only once, or over a definite time-horizon

• If firms interact repeatedly over an in(de)finite time horizon, 
collusion can be supported by strategies that involve credible 
punishment of free-riding deviators 
(provided that a deviator’s forgone long-term collusion rents are important 
enough relative to short-term gains from deviation → #8: Folk Theorems)
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Collusion in the symmetric CRS Bertrand oligopoly

• In the symmetric Bertrand n-firm oligopoly with CRS, a firm‘s 
per-period profit is

P* » 0 if all firms compete,
Pk = Pm /n if all firms collude, and
Pd » Pm if the firm deviates

• Collusion can be realized by an SPE in Nash reversion 
strategies iff firms discount future profits by a factor d that is no 
smaller than the critical discount factor

dcrit.b =(Pd -Pk) / (Pd -P*)= (n-1)/n
• The critical discount factor increases in n, and converges to 1


